To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
§1. Introduction. Most prominent among the classical problems in additive number theory are those of Waring and Goldbach type. Although use of the Hardy–Littlewood method has brought admirable progress, the finer questions associated with such problems have yet to find satisfactory solutions. For example, while the ternary Goldbach problem was solved by Vinogradov as early as 1937 (see Vinogradov [16], [17]), the latter's methods permit one to establish merely that almost all even integers are the sum of two primes (see Chudakov [4], van der Corput [5] and Estermann [7]).
Let p(n) be the usual partition function. Let l be an odd prime, and let r (mod t) be any arithmetic progression. If there exists an integer n ≡ r (mod t) such that p(n) ≢ 0 (mod l), then, for large X,
As usual in Waring's problem, we let G(k) be the least number s such that all sufficiently large natural numbers can be written as the sum of s or fewer k-th powers of positive integers. Hardy and Littlewood gave the first general upper bound, G(k)≤(k − 2)2k − 1 + 5. Later [4], they reduced this to order k2 by first constructing an auxiliary set of natural numbers below x which are sums of sk-th powers, of cardinality with for large k. The argument, which is brief and elementary (see [15, Chapter 6]), is now referred to by R. C. Vaughan's term “diminishing ranges”, since the k-th powers are taken from intervals of decreasing lengths. This idea of choosing the variables from restricted ranges was refined by Vinogradov, whose application to exponential sum estimates gave for large k (see [18]). The recent iterative method of Vaughan and Wooley [16, 19, 21], which halves Vinogradov's bound, may be viewed as an evolved diminishing ranges argument, producing an auxiliary set with .
This is an expanded version of two lectures given at the conference held at Sydney University in December 1997 on the 50th anniversary of the death of G. H. Hardy.
Let (Sn)n = 1,2,… be the strictly increasing sequence of those natural numbers that can be represented as the sum of three cubes of positive integers. The estimate
is easily proved as follows: Let x1 be the largest natural number with Then This procedure is iterated by choosing x2 and then x3 as the largest natural numbers satisfying and Thus Since this implies (1).
On Waring's problem for cubes, it is conjectured that every sufficiently large natural number can be represented as a sum of four cubes of natural numbers. Denoting by E(N) the number of the natural numbers up to N that cannot be written as a sum of four cubes, we may express the conjecture as E(N)≪1.
In 1973, Montgomery [12] introduced, in order to study the vertical distribution of the zeros of the Riemann zeta function, the pair correlation function
where w(u) = 4/(4 + u2) and γjj = 1, 2, run over the imaginary part of the nontrivial zeros of ζ(s). It is easy to see that, for T → ∞,
uniformly in X, and Montgomery [12], see also Goldston-Montgomery [7], proved that under the Riemann Hypothesis (RH)
uniformly for X ≤ T ≤ XA, for any fixed A > 1. He also conjectured, under RH, that (1) holds uniformly for Xε ≤ T ≤ X, for every fixed ε > 0. We denote by MC the above conjecture.
Let s, k and n be positive integers and define rs,k(n) to be the number of solutions of the diophantine equation
in positive integers xi. In 1922, using their circle method, Hardy and Littlewood [2] established the asymptotic formula
whenever s≥(k−2)2k−1 + 5. Here , the singular series, relates the local solubility of (1.1). For each k we define to be the smallest value of s0 such that for all s ≥ s0 we have (1.2), the asymptotic formula in Waring's problem. The main result of this memoir is the following theorem which improves upon bounds of previous authors when k≤9.
§1. Introduction. The literature on solving a system of linear equations in primes is quite limited, although the multi-dimensional Hardy-Littlewood method certainly provides an approach to this problem. The Goldbach- Vinogradov theorem and van der Corput's proof of the existence of infinitely many three term arithmetic progressions in primes are two particular results in the special case of only one equation. Recently Liu and Tsang [4] studied this case in full generality and obtained a result with excellent uniformity in the coefficients. Almost no other general result has appeared so far, due probably to the fact that such a theorem is clumsy to state.
The object of this paper is to obtain improvements in Vinogradov's mean value theorem widely applicable in additive number theory. Let Js,k(P) denote the number of solutions of the simultaneous diophantine equations
with 1 ≥ xi, yi ≥ P for 1 ≥ i ≥ s. In the mid-thirties Vinogradov developed a new method (now known as Vinogradov's mean value theorem) which enabled him to obtain fairly strong bounds for Js,k(P). On writing
in which e(α) denotes e2πiα, we observe that
where Tk denotes the k-dimensional unit cube, and α = (α1,…,αk).