We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
§1. Introduction. The literature on solving a system of linear equations in primes is quite limited, although the multi-dimensional Hardy-Littlewood method certainly provides an approach to this problem. The Goldbach- Vinogradov theorem and van der Corput's proof of the existence of infinitely many three term arithmetic progressions in primes are two particular results in the special case of only one equation. Recently Liu and Tsang [4] studied this case in full generality and obtained a result with excellent uniformity in the coefficients. Almost no other general result has appeared so far, due probably to the fact that such a theorem is clumsy to state.
The object of this paper is to obtain improvements in Vinogradov's mean value theorem widely applicable in additive number theory. Let Js,k(P) denote the number of solutions of the simultaneous diophantine equations
with 1 ≥ xi, yi ≥ P for 1 ≥ i ≥ s. In the mid-thirties Vinogradov developed a new method (now known as Vinogradov's mean value theorem) which enabled him to obtain fairly strong bounds for Js,k(P). On writing
in which e(α) denotes e2πiα, we observe that
where Tk denotes the k-dimensional unit cube, and α = (α1,…,αk).