We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose that $k_0\geq 3.5\times 10^6$ and $\mathcal{H}=\{h_1,\ldots,h_{k_0}\}$ is admissible. Then, for any $m\geq 1$, the set $\{m(h_j-h_i):\, h_i<h_j\}$ contains at least one Polignac number.
We solve a randomized version of the following open question: is there a strictly convex, bounded curve $\gamma \subset { \mathbb{R} }^{2} $ such that the number of rational points on $\gamma $, with denominator $n$, approaches infinity with $n$? Although this natural problem appears to be out of reach using current methods, we consider a probabilistic analogue using a spatial Poisson process that simulates the refined rational lattice $(1/ d){ \mathbb{Z} }^{2} $, which we call ${M}_{d} $, for each natural number $d$. The main result here is that with probability $1$ there exists a strictly convex, bounded curve $\gamma $ such that $\vert \gamma \cap {M}_{d} \vert \rightarrow + \infty , $ as $d$ tends to infinity. The methods include the notion of a generalized affine length of a convex curve as defined by F. V. Petrov [Estimates for the number of rational points on convex curves and surfaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)344 (2007), 174–189; Engl. transl. J. Math. Sci.147(6) (2007), 7218–7226].
Blecher [‘Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main diagonal’, Util. Math.88 (2012), 223–235] defined the combinatorial objects known as 1-shell totally symmetric plane partitions of weight $n$. He also proved that the generating function for $f(n), $ the number of 1-shell totally symmetric plane partitions of weight $n$, is given by
In this brief note, we prove a number of arithmetic properties satisfied by $f(n)$ using elementary generating function manipulations and well-known results of Ramanujan and Watson.
In 2007, Andrews and Paule introduced a new class of combinatorial objects called broken $k$-diamond partitions. Recently, Shishuo Fu generalised the notion of broken $k$-diamond partitions to combinatorial objects which he termed $k$ dots bracelet partitions. Fu denoted the number of $k$ dots bracelet partitions of $n$ by ${\mathfrak{B}}_{k} (n)$ and proved several congruences modulo primes and modulo powers of 2. More recently, Radu and Sellers extended the set of congruences proven by Fu by proving three congruences modulo squares of primes for ${\mathfrak{B}}_{5} (n)$, ${\mathfrak{B}}_{7} (n)$ and ${\mathfrak{B}}_{11} (n)$. In this note, we prove some congruences modulo powers of 2 for ${\mathfrak{B}}_{5} (n)$. For example, we find that for all integers $n\geq 0$, ${\mathfrak{B}}_{5} (16n+ 7)\equiv 0\hspace{0.167em} ({\rm mod} \hspace{0.334em} {2}^{5} )$.
We investigate sums of mixed powers involving two squares and three biquadrates. In particular, subject to the truth of the Generalised Riemann Hypothesis and the Elliott–Halberstam conjecture, we show that all large natural numbers $n$ with $8\nmid n$, $n\not\equiv 2~(\text{mod} ~3)$ and $n\not\equiv 14~(\text{mod} ~16)$ are the sum of two squares and three biquadrates.
Given an intersection of two quadrics $X\subset { \mathbb{P} }^{m- 1} $, with $m\geq 9$, the quantitative arithmetic of the set $X( \mathbb{Q} )$ is investigated under the assumption that the singular locus of $X$ consists of a pair of conjugate singular points defined over $ \mathbb{Q} (i)$.
Gama and Nguyen [‘Finding short lattice vectors within Mordell’s inequality’, in: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, New York, 2008, 257–278] have presented slide reduction which is currently the best SVP approximation algorithm in theory. In this paper, we prove the upper and lower bounds for the ratios $\Vert { \mathbf{b} }_{i}^{\ast } \Vert / {\lambda }_{i} (\mathbf{L} )$ and $\Vert {\mathbf{b} }_{i} \Vert / {\lambda }_{i} (\mathbf{L} )$, where ${\mathbf{b} }_{1} , \ldots , {\mathbf{b} }_{n} $ is a slide reduced basis and ${\lambda }_{1} (\mathbf{L} ), \ldots , {\lambda }_{n} (\mathbf{L} )$ denote the successive minima of the lattice $\mathbf{L} $. We define generalised slide reduction and use slide reduction to approximate $i$-SIVP, SMP and CVP. We also present a critical slide reduced basis for blocksize 2.
For $n= 1, 2, 3, \ldots $ let ${S}_{n} $ be the sum of the first $n$ primes. We mainly show that the sequence ${a}_{n} = \sqrt[n]{{S}_{n} / n}~(n= 1, 2, 3, \ldots )$ is strictly decreasing, and moreover the sequence ${a}_{n+ 1} / {a}_{n} ~(n= 10, 11, \ldots )$ is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
We describe how the Hardy–Ramanujan–Rademacher formula can be implemented to allow the partition function p(n) to be computed with softly optimal complexity O(n1/2+o(1)) and very little overhead. A new implementation based on these techniques achieves speedups in excess of a factor 500 over previously published software and has been used by the author to calculate p(1019), an exponent twice as large as in previously reported computations. We also investigate performance for multi-evaluation of p(n), where our implementation of the Hardy–Ramanujan–Rademacher formula becomes superior to power series methods on far denser sets of indices than previous implementations. As an application, we determine over 22 billion new congruences for the partition function, extending Weaver’s tabulation of 76 065 congruences. Supplementary materials are available with this article.
In this paper we generalize and extend work by Languasco, Perreli and Zaccagnini on the Montgomery–Hooley theorem in short intervals. We are thus able to obtain asymptotic formulae for the mean-square error in the distribution of general sequences in arithmetic progressions in short intervals. As applications we consider lower and upper bound approximations to the characteristic function of the primes in a short interval and an average over short intervals for the von Mangoldt function.
Let u(n) and v(n) be the number of representations of a nonnegative integer n in the forms x2+4y2+4z2 and x2+2y2+2z2, respectively, with x,y,z∈ℤ, and let a4(n) and r3(n) be the number of 4-cores of n and the number of representations of n as a sum of three squares, respectively. By employing simple theta-function identities of Ramanujan, we prove that $u(8n+5)=8a_4(n)=v(8n+5)=\frac {1}{3}r_3(8n+5)$. With the help of this and a classical result of Gauss, we find a simple proof of a result on a4 (n) proved earlier by K. Ono and L. Sze [‘4-core partitions and class numbers’, Acta Arith. 80 (1997), 249–272]. We also find some new infinite families of arithmetic relations involving a4 (n) .
We develop Weyl differencing and Hua-type lemmata for a class of multidimensional exponential sums. We then apply our estimates to bound the number of variables required to establish an asymptotic formula for the number of solutions of a system of diophantine equations arising from the study of linear spaces on hypersurfaces. For small values of the degree and dimension, our results are superior to those stemming from the author’s earlier work on Vinogradov’s mean value theorem.
In this paper, we consider the simultaneous representation of pairs of positive integers. We show that every pair of large positive even integers can be represented in the form of a pair of linear equations in four prime variables and k powers of two. Here, k=63 in general and k=31 under the generalised Riemann hypothesis.
We apply a method of Davenport to improve several estimates for slim exceptional sets associated with the asymptotic formula in Waring’s problem. In particular, we show that the anticipated asymptotic formula in Waring’s problem for sums of seven cubes holds for all but O(N1/3+ε) of the natural numbers not exceeding N.
We prove two results about the asymptotic formula for The first result is for x7/12+ε≤h≤x and h/(log x)B≤Q≤h, where ε,B>0 are arbitrary constants. For the second result we assume that the Generalized Riemann Hypothesis holds and we obtain a stronger error term and a better uniformity on h.
We study the variance of the fluctuations in the number of lattice points in a ball and in a thin spherical shell of large radius centred at a Diophantine point.
We extend Kemperman's structure theorem by completely characterizing those finite subsets A and B of an arbitrary abelian group with |A + B| = |A| + |B|.
Let R(n,θ) denote the number of representations of the natural number n as the sum of four squares, each composed only with primes not exceeding nθ/2. When θ>e−1/3 a lower bound for R(n,θ) of the expected order of magnitude is established, and when θ>365/592, it is shown that R(n,θ)>0 holds for large n. A similar result is obtained for sums of three squares. An asymptotic formula is obtained for the related problem of representing an integer as the sum of two squares and two squares composed of small primes, as above, for any fixed θ>0. This last result is the key to bound R(n,θ) from below.