We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we decompose
$\overline {D}(a,M)$
into modular and mock modular parts, so that it gives as a straightforward consequencethe celebrated results of Bringmann and Lovejoy on Maass forms. Let
$\overline {p}(n)$
be the number of partitions of n and
$\overline {N}(a,M,n)$
be the number of overpartitions of n with rank congruent to a modulo M. Motivated by Hickerson and Mortenson, we find and prove a general formula for Dyson’s ranks by considering the deviation of the ranks from the average:
In this note, we evaluate sums of partial theta functions. Our main tool is an application of an extended version of the Bailey transform to an identity of Gasper and Rahman on $q$-hypergeometric series.
For positive integers $n$ and $k$, let $r_{k}(n)$ denote the number of representations of $n$ as a sum of $k$ squares, where representations with different orders and different signs are counted as distinct. For a given positive integer $m$, by means of some properties of binomial coefficients, we derive some infinite families of congruences for $r_{k}(n)$ modulo $2^{m}$. Furthermore, in view of these arithmetic properties of $r_{k}(n)$, we establish many infinite families of congruences for the overpartition function and the overpartition pair function.
Andrews [‘Binary and semi-Fibonacci partitions’, J. Ramanujan Soc. Math. Math. Sci.7(1) (2019), 1–6] recently proved a new identity between the cardinalities of the set of semi-Fibonacci partitions and the set of partitions into powers of 2 with all parts appearing an odd number of times. We extend the identity to the set of semi-$m$-Fibonacci partitions of $n$ and the set of partitions of $n$ into powers of $m$ in which all parts appear with multiplicity not divisible by $m$. We also give a new characterisation of semi-$m$-Fibonacci partitions and some congruences satisfied by the associated number sequence.
In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.
Let ${\mathcal{A}}$ be a star-shaped polygon in the plane, with rational vertices, containing the origin. The number of primitive lattice points in the dilate $t{\mathcal{A}}$ is asymptotically $\frac{6}{\unicode[STIX]{x1D70B}^{2}}\text{Area}(t{\mathcal{A}})$ as $t\rightarrow \infty$. We show that the error term is both $\unicode[STIX]{x1D6FA}_{\pm }(t\sqrt{\log \log t})$ and $O(t(\log t)^{2/3}(\log \log t)^{4/3})$. Both bounds extend (to the above class of polygons) known results for the isosceles right triangle, which appear in the literature as bounds for the error term in the summatory function for Euler’s $\unicode[STIX]{x1D719}(n)$.
Recently, Brietzke, Silva and Sellers [‘Congruences related to an eighth order mock theta function of Gordon and McIntosh’, J. Math. Anal. Appl.479 (2019), 62–89] studied the number $v_{0}(n)$ of overpartitions of $n$ into odd parts without gaps between the nonoverlined parts, whose generating function is related to the mock theta function $V_{0}(q)$ of order 8. In this paper we first present a short proof of the 3-dissection for the generating function of $v_{0}(2n)$. Then we establish three congruences for $v_{0}(n)$ along certain progressions which are subsequences of the integers $4n+3$.
Let $\overline{t}(n)$ be the number of overpartitions in which (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) if the smallest part is odd then it is overlined. Ramanujan-type congruences for $\overline{t}(n)$ modulo small powers of $2$ and $3$ have been established. We present two infinite families of congruences modulo $5$ and $27$ for $\overline{t}(n)$, the first of which generalises a recent result of Chern and Hao [‘Congruences for two restricted overpartitions’, Proc. Math. Sci.129 (2019), Article 31].
We prove that every sufficiently large even integer can be represented as the sum of two squares of primes, four cubes of primes and 28 powers of two. This improves the result obtained by Liu and Lü [‘Two results on powers of 2 in Waring–Goldbach problem’, J. Number Theory131(4) (2011), 716–736].
Such a sequence is eventually periodic and we denote by $P(n)$ the maximal period of such sequences for given odd $n$. We prove a lower bound for $P(n)$ by counting certain partitions. We then estimate the size of these partitions via the multiplicative order of two modulo $n$.
We investigate the arithmetic properties of the second-order mock theta function $B(q)$ and establish two identities for the coefficients of this function along arithmetic progressions. As applications, we prove several congruences for these coefficients.
The first purpose of our paper is to show how Hooley’s celebrated method leading to his conditional proof of the Artin conjecture on primitive roots can be combined with the Hardy–Littlewood circle method. We do so by studying the number of representations of an odd integer as a sum of three primes, all of which have prescribed primitive roots. The second purpose is to analyse the singular series. In particular, using results of Lenstra, Stevenhagen and Moree, we provide a partial factorisation as an Euler product and prove that this does not extend to a complete factorisation.
We show that if A is a finite K-approximate subgroup of an s-step nilpotent group then there is a finite normal subgroup $H \subset {A^{{K^{{O_s}(1)}}}}$ modulo which ${A^{{O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)}}$ contains a nilprogression of rank at most ${O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)$ and size at least $\exp ( - {O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K))|A|$. This partially generalises the close-to-optimal bounds obtained in the abelian case by Sanders, and improves the bounds and simplifies the exposition of an earlier result of the author. Combined with results of Breuillard–Green, Breuillard–Green–Tao, Gill–Helfgott–Pyber–Szabó, and the author, this leads to improved rank bounds in Freiman-type theorems in residually nilpotent groups and certain linear groups of bounded degree.
We show that there is an absolute $c>0$ such that if $A$ is a finite set of integers, then there is a set $S\subset A$ of size at least $\log ^{1+c}|A|$ such that the restricted sumset $\{s+s^{\prime }:s,s^{\prime }\in S\text{ and }s\neq s^{\prime }\}$ is disjoint from $A$. (The logarithm here is to base $3$.)
We generalise a result of Chern [‘A curious identity and its applications to partitions with bounded part differences’, New Zealand J. Math.47 (2017), 23–26] on distinct partitions with bounded difference between largest and smallest parts. The generalisation is proved both analytically and bijectively.
For positive integers $t_{1},\ldots ,t_{k}$, let $\tilde{p}(n,t_{1},t_{2},\ldots ,t_{k})$ (respectively $p(n,t_{1},t_{2},\ldots ,t_{k})$) be the number of partitions of $n$ such that, if $m$ is the smallest part, then each of $m+t_{1},m+t_{1}+t_{2},\ldots ,m+t_{1}+t_{2}+\cdots +t_{k-1}$ appears as a part and the largest part is at most (respectively equal to) $m+t_{1}+t_{2}+\cdots +t_{k}$. Andrews et al. [‘Partitions with fixed differences between largest and smallest parts’, Proc. Amer. Math. Soc.143 (2015), 4283–4289] found an explicit formula for the generating function of $p(n,t_{1},t_{2},\ldots ,t_{k})$. We establish a $q$-series identity from which the formulae for the generating functions of $\tilde{p}(n,t_{1},t_{2},\ldots ,t_{k})$ and $p(n,t_{1},t_{2},\ldots ,t_{k})$ can be obtained.
Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of $n$ without $k$ consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they yield asymptotics for the number of partitions that avoid patterns.
Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models, introduced the study of partitions without $k$ consecutive parts. Andrews showed that when $k=2$, the generating function for these partitions is a mixed-mock modular form and, thus, has modularity properties which can be utilized in the study of this generating function. For $k>2$, the asymptotic properties of the generating functions have proved more difficult to obtain. Using $q$-series identities and the $k=2$ case as evidence, Andrews stated a conjecture for the asymptotic behavior. Extensive computational evidence for the conjecture in the case $k=3$ was given by Zagier.
This paper improved upon early approaches to this problem by identifying and overcoming two sources of error. Since the writing of this paper, a more precise asymptotic result was established by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.
We improve some results in our paper [A. Languasco and A. Zaccagnini, ‘Short intervals asymptotic formulae for binary problems with prime powers’, J. Théor. Nombres Bordeaux30 (2018) 609–635] about the asymptotic formulae in short intervals for the average number of representations of integers of the forms $n=p_{1}^{\ell _{1}}+p_{2}^{\ell _{2}}$ and $n=p^{\ell _{1}}+m^{\ell _{2}}$, where $\ell _{1},\ell _{2}\geq 2$ are fixed integers, $p,p_{1},p_{2}$ are prime numbers and $m$ is an integer. We also remark that the techniques here used let us prove that a suitable asymptotic formula for the average number of representations of integers $n=\sum _{i=1}^{s}p_{i}^{\ell }$, where $s$, $\ell$ are two integers such that $2\leq s\leq \ell -1$, $\ell \geq 3$ and $p_{i}$, $i=1,\ldots ,s$, are prime numbers, holds in short intervals.
A strongly concave composition of $n$ is an integer partition with strictly decreasing and then increasing parts. In this paper we give a uniform asymptotic formula for the rank statistic of a strongly concave composition introduced by Andrews et al. [‘Modularity of the concave composition generating function’, Algebra Number Theory7(9) (2013), 2103–2139].