We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$N\geq 1$
be squarefree with
$(N,6)=1$
. Let
$c\phi _N(n)$
denote the number of N-colored generalized Frobenius partitions of n introduced by Andrews in 1984, and
$P(n)$
denote the number of partitions of n. We prove
where
$C(z) := (q;q)^N_\infty \sum _{n=1}^{\infty } b(n) q^n$
is a cusp form in
$S_{(N-1)/2} (\Gamma _0(N),\chi _N)$
. This extends and strengthens earlier results of Kolitsch and Chan–Wang–Yan treating the case when N is a prime. As an immediate application, we obtain an asymptotic formula for
$c\phi _N(n)$
in terms of the classical partition function
$P(n)$
.
Let G be a
$\sigma $
-finite abelian group, i.e.,
$G=\bigcup _{n\geq 1} G_n$
where
$(G_n)_{n\geq 1}$
is a nondecreasing sequence of finite subgroups. For any
$A\subset G$
, let
$\underline {\mathrm {d}}( A ):=\liminf _{n\to \infty }\frac {|A\cap G_n|}{|G_n|}$
be its lower asymptotic density. We show that for any subsets A and B of G, whenever
$\underline {\mathrm {d}}( A+B )<\underline {\mathrm {d}}( A )+\underline {\mathrm {d}}( B )$
, the sumset
$A+B$
must be periodic, that is, a union of translates of a subgroup
$H\leq G$
of finite index. This is exactly analogous to Kneser’s theorem regarding the density of infinite sets of integers. Further, we show similar statements for the upper asymptotic density in the case where
$A=\pm B$
. An analagous statement had already been proven by Griesmer in the very general context of countable abelian groups, but the present paper provides a much simpler argument specifically tailored for the setting of
$\sigma $
-finite abelian groups. This argument relies on an appeal to another theorem of Kneser, namely the one regarding finite sumsets in an abelian group.
Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$. In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$, where $\pi '$ is the conjugate of $\pi$. Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$. Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$. These results are refinements of some inequalities due to Swisher.
Let
$p_{\{3, 3\}}(n)$
denote the number of
$3$
-regular partitions in three colours. Da Silva and Sellers [‘Arithmetic properties of 3-regular partitions in three colours’, Bull. Aust. Math. Soc.104(3) (2021), 415–423] conjectured four Ramanujan-like congruences modulo
$5$
satisfied by
$p_{\{3, 3\}}(n)$
. We confirm these conjectural congruences using the theory of modular forms.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
For a subset S of nonnegative integers and a vector
$\mathbf {a}=(a_1,\ldots ,a_k)$
of positive integers, define the set
$V^{\prime }_S(\mathbf {a})=\{ a_1s_1+\cdots +a_ks_k : s_i\in S\}-\{0\}$
. For a positive integer n, let
$\mathcal T(n)$
be the set of integers greater than or equal to n. We consider the problem of finding all vectors
$\mathbf {a}$
satisfying
$V^{\prime }_S(\mathbf {a})=\mathcal T(n)$
when S is the set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the case when S is the set of triangular numbers.
We give an upper bound for the minimum s with the property that every sufficiently large integer can be represented as the sum of s positive kth powers of integers, each of which is represented as the sum of three positive cubes for the cases
$2\leq k\leq 4.$
Merca [‘Congruence identities involving sums of odd divisors function’, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci.22(2) (2021), 119–125] posed three conjectures on congruences for specific convolutions of a sum of odd divisor functions with a generating function for generalised m-gonal numbers. Extending Merca’s work, we complete the proof of these conjectures.
Gireesh and Mahadeva Naika [‘On 3-regular partitions in 3-colors’, Indian J. Pure Appl. Math.50 (2019), 137–148] proved an infinite family of congruences modulo powers of 3 for the function
$p_{\{3,3\}}(n)$
, the number of 3-regular partitions in three colours. In this paper, using elementary generating function manipulations and classical techniques, we significantly extend the list of proven arithmetic properties satisfied by
$p_{\{3,3\}}(n).$
We investigate the distribution of the digits of quotients of randomly chosen positive integers taken from the interval
$[1,T]$
, improving the previously known error term for the counting function as
$T\to +\infty $
. We also resolve some natural variants of the problem concerning points with prime coordinates and points that are visible from the origin.
Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$. A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$, $i\not =c$, the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$. Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.
Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least
$$|S| - m\ln |G|$$
elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least
$$|G{|^{1 - c{ \in ^l}}}$$
for certain c=c(m) and
$$ \in = \in (m) < 1$$
; we use the probabilistic method to give sharper values of c(m) and
$$ \in (m)$$
in the case when G is a vector space; and we give new proofs of related known results.
We find a new refinement of Fine’s partition theorem on partitions into distinct parts with the minimum part odd. As a consequence, we obtain two companion partition identities. Both analytic and combinatorial proofs are provided.
The aim of this article is to provoke discussion concerning arithmetic properties of the function
$p_{d}(n)$
counting partitions of a positive integer n into dth powers, where
$d\geq 2$
. Apart from results concerning the asymptotic behaviour of
$p_{d}(n)$
, little is known. In the first part of the paper, we prove certain congruences involving functions counting various types of partitions into dth powers. The second part of the paper is experimental and contains questions and conjectures concerning the arithmetic behaviour of the sequence
$(p_{d}(n))_{n\in \mathbb {N}}$
, based on computations of
$p_{d}(n)$
for
$n\leq 10^5$
for
$d=2$
and
$n\leq 10^{6}$
for
$d=3, 4, 5$
.
We show that there are biases in the number of appearances of the parts in two residue classes in the set of ordinary partitions. More precisely, let
$p_{j,k,m} (n)$
be the number of partitions of n such that there are more parts congruent to j modulo m than parts congruent to k modulo m for
$m \geq 2$
. We prove that
$p_{1,0,m} (n)$
is in general larger than
$p_{0,1,m} (n)$
. We also obtain asymptotic formulas for
$p_{1,0,m}(n)$
and
$p_{0,1,m}(n)$
for
$m \geq 2$
.
Andrews introduced the partition function
$\overline {C}_{k, i}(n)$
, called the singular overpartition function, which counts the number of overpartitions of n in which no part is divisible by k and only parts
$\equiv \pm i\pmod {k}$
may be overlined. We prove that
$\overline {C}_{6, 2}(n)$
is almost always divisible by
$2^k$
for any positive integer k. We also prove that
$\overline {C}_{6, 2}(n)$
and
$\overline {C}_{12, 4}(n)$
are almost always divisible by
$3^k$
. Using a result of Ono and Taguchi on nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of
$2$
satisfied by
$\overline {C}_{6, 2}(n)$
.
We investigate the sum of the parts in all the partitions of n into distinct parts and give two infinite families of linear inequalities involving this sum. The results can be seen as new connections between partitions and divisors.
Let r be an integer with 2 ≤ r ≤ 24 and let pr(n) be defined by $\sum _{n=0}^\infty p_r(n) q^n = \prod _{k=1}^\infty (1-q^k)^r$. In this paper, we provide uniform methods for discovering infinite families of congruences and strange congruences for pr(n) by using some identities on pr(n) due to Newman. As applications, we establish many infinite families of congruences and strange congruences for certain partition functions, such as Andrews's smallest parts function, the coefficients of Ramanujan's ϕ function and p-regular partition functions. For example, we prove that for n ≥ 0,
We construct eta-quotient representations of two families of q-series involving the Rogers–Ramanujan continued fraction by establishing related recurrence relations. We also display how these eta-quotient representations can be utilised to dissect certain q-series identities.