We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
All known structural extensions of the substructural logic
$\textbf{FL}_{\textbf{e}}$
, the Full Lambek calculus with exchange/commutativity (corresponding to subvarieties of commutative residuated lattices axiomatized by
$\{\vee , \cdot , 1\}$
-equations), have decidable theoremhood; in particular all the ones defined by knotted axioms enjoy strong decidability properties (such as the finite embeddability property). We provide infinitely many such extensions that have undecidable theoremhood, by encoding machines with undecidable halting problem. An even bigger class of extensions is shown to have undecidable deducibility problem (the corresponding varieties of residuated lattices have undecidable word problem); actually with very few exceptions, such as the knotted axioms and the other prespinal axioms, we prove that undecidability is ubiquitous. Known undecidability results for non-commutative extensions use an encoding that fails in the presence of commutativity, so and-branching counter machines are employed. Even these machines provide encodings that fail to capture proper extensions of commutativity, therefore we introduce a new variant that works on an exponential scale. The correctness of the encoding is established by employing the theory of residuated frames.
We present a Zermelo–Fraenkel (
$\textbf {ZF}$
) consistency result regarding bi-orderability of groups. A classical consequence of the ultrafilter lemma is that a group is bi-orderable if and only if it is locally bi-orderable. We show that there exists a model of
$\textbf {ZF}$
plus dependent choice in which there is a group which is locally free (ergo locally bi-orderable) and not bi-orderable, and the group can be given a total order. The model also includes a torsion-free abelian group which is not bi-orderable but can be given a total order.
A slope r is called a left orderable slope of a knot
$K \subset S^3$
if the 3-manifold obtained by r-surgery along K has left orderable fundamental group. Consider double twist knots
$C(2m, \pm 2n)$
and
$C(2m+1, -2n)$
in the Conway notation, where
$m \ge 1$
and
$n \ge 2$
are integers. By using continuous families of hyperbolic
${\mathrm {SL}}_2(\mathbb {R})$
-representations of knot groups, it was shown in [8, 16] that any slope in
$(-4n, 4m)$
(resp.
$ [0, \max \{4m, 4n\})$
) is a left orderable slope of
$C(2m, 2n)$
(resp.
$C(2m, - 2n)$
) and in [6] that any slope in
$(-4n,0]$
is a left orderable slope of
$C(2m+1,-2n)$
. However, the proofs of these results are incomplete, since the continuity of the families of representations was not proved. In this paper, we complete these proofs, and, moreover, we show that any slope in
$(-4n, 4m)$
is a left orderable slope of
$C(2m+1,-2n)$
detected by hyperbolic
${\mathrm {SL}}_2(\mathbb {R})$
-representations of the knot group.
We prove that Cuntz semigroups of C*-algebras satisfy Edwards' condition with respect to every quasitrace. This condition is a key ingredient in the study of the realization problem of functions on the cone of quasitraces as ranks of positive elements. In the course of our investigation, we identify additional structure of the Cuntz semigroup of an arbitrary C*-algebra and of the cone of quasitraces.
We construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.
As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.
Every left-invariant ordering of a group is either discrete, meaning there is a least element greater than the identity, or dense. Corresponding to this dichotomy, the spaces of left, Conradian, and bi-orderings of a group are naturally partitioned into two subsets. This note investigates the structure of this partition, specifically the set of dense orderings of a group and its closure within the space of orderings. We show that for bi-orderable groups, this closure will always contain the space of Conradian orderings—and often much more. In particular, the closure of the set of dense orderings of the free group is the entire space of left-orderings.
By previous work of Giordano and the author, ergodic actions of $\mathbf{Z}$ (and other discrete groups) are completely classified measure-theoretically by their dimension space, a construction analogous to the dimension group used in $\text{C}^{\ast }$-algebras and topological dynamics. Here we investigate how far from approximately transitive (AT) actions can be that derive from circulant (and related) matrices. It turns out not very: although non-AT actions can arise from this method of construction, under very modest additional conditions, approximate transitivity arises. KIn addition, if we drop the positivity requirement in the isomorphism of dimension spaces, then all these ergodic actions satisfy an analogue of AT. Many examples are provided.
This paper explores the structure groups G(X,r) of finite non-degenerate set-theoretic solutions (X,r) to the Yang–Baxter equation. Namely, we construct a finite quotient $\overline {G}_{(X,r)}$ of G(X,r), generalizing the Coxeter-like groups introduced by Dehornoy for involutive solutions. This yields a finitary setting for testing injectivity: if X injects into G(X,r), then it also injects into $\overline {G}_{(X,r)}$. We shrink every solution to an injective one with the same structure group, and compute the rank of the abelianization of G(X,r). We show that multipermutation solutions are the only involutive solutions with diffuse structure groups; that only free abelian structure groups are bi-orderable; and that for the structure group of a self-distributive solution, the following conditions are equivalent: bi-orderable, left-orderable, abelian, free abelian and torsion free.
We provide an equivariant extension of the bivariant Cuntz semigroup introduced in previous work for the case of compact group actions over C*-algebras. Its functoriality properties are explored, and some well-known classification results are retrieved. Connections with crossed products are investigated, and a concrete presentation of equivariant Cuntz homology is provided. The theory that is here developed can be used to define the equivariant Cuntz semigroup. We show that the object thus obtained coincides with the one recently proposed by Gardella [‘Regularity properties and Rokhlin dimension for compact group actions’, Houston J. Math.43(3) (2017), 861–889], and we complement their work by providing an open projection picture of it.
It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.
It is proved that a quantale is projective if and only if it is isomorphic to a derived tensor quantale over a completely distributive sup-lattice. Furthermore, an intrinsic characterization of projectivity is given in terms of inertial sup-lattices and derivations of quantales.
A semiring is a set $S$ with two binary operations $+ $ and $\cdot $ such that both the additive reduct ${S}_{+ } $ and the multiplicative reduct ${S}_{\bullet } $ are semigroups which satisfy the distributive laws. If $R$ is a ring, then, following Chaptal [‘Anneaux dont le demi-groupe multiplicatif est inverse’, C. R. Acad. Sci. Paris Ser. A–B262 (1966), 274–277], ${R}_{\bullet } $ is a union of groups if and only if ${R}_{\bullet } $ is an inverse semigroup if and only if ${R}_{\bullet } $ is a Clifford semigroup. In Zeleznikow [‘Regular semirings’, Semigroup Forum23 (1981), 119–136], it is proved that if $R$ is a regular ring then ${R}_{\bullet } $ is orthodox if and only if ${R}_{\bullet } $ is a union of groups if and only if ${R}_{\bullet } $ is an inverse semigroup if and only if ${R}_{\bullet } $ is a Clifford semigroup. The latter result, also known as Zeleznikow’s theorem, does not hold in general even for semirings $S$ with ${S}_{+ } $ a semilattice Zeleznikow [‘Regular semirings’, Semigroup Forum23 (1981), 119–136]. The Zeleznikow problem on a certain class of semirings involves finding condition(s) such that Zeleznikow’s theorem holds on that class. The main objective of this paper is to solve the Zeleznikow problem for those semirings $S$ for which ${S}_{+ } $ is a semilattice.
Rooted monounary algebras can be considered as an algebraic counterpart of directed rooted trees. We work towards a characterization of the lattice of compatible quasiorders by describing its join- and meet-irreducible elements. We introduce the limit $\cB _\infty $ of all $d$-dimensional Boolean cubes $\Two ^d$ as a monounary algebra; then the natural order on $\Two ^d$ is meet-irreducible. Our main result is that any completely meet-irreducible quasiorder of a rooted algebra is a homomorphic preimage of the natural partial order (or its inverse) of a suitable subalgebra of $\cB _\infty $. For a partial order, it is known that complete meet-irreducibility means that the corresponding partially ordered structure is subdirectly irreducible. For a rooted monounary algebra it is shown that this property implies that the unary operation has finitely many nontrivial kernel classes and its graph is a binary tree.
We introduce perfect effect algebras and we show that every perfect algebra is an interval in the lexicographical product of the group of all integers with an Abelian directed interpolation po-group. To show this we introduce prime ideals of effect algebras with the Riesz decomposition property (RDP). We show that the category of perfect effect algebras is categorically equivalent to the category of Abelian directed interpolation po-groups. Moreover, we prove that any perfect effect algebra is a subdirect product of antilattice effect algebras with the RDP.
Pseudoeffect (PE-) algebras generalize effect algebras by no longer being necessarily commutative. They are in certain cases representable as the unit interval of a unital po-group, for instance if they fulfil a certain Riesz property.
Several infinitary lattice properties and the countable Riesz interpolation property are studied for PE-algebras on the one hand and for po-groups on the other hand. We establish the exact relationships between the various conditions that are taken into account, and in particular, we examine how properties of a PE-algebra are related to the analogous properties of a representing po-group.
Let A be a uniformly complete vector sublattice of an Archimedean semiprime f-algebra B and p ∈ {1, 2,…}. It is shown that the set ΠBp (A) = {f1 … fp: fk ∈ A, k = 1, …, p } is a uniformly complete vector sublattice of B. Moreover, if A is provided with an almost f-algebra multiplication * then there exists a positive operator Tp, from ΠBp(A) into A such that fi *…* fp = Tp(f1 …fp) for all f1…fp ∈ A.
As application, being given a uniformly complete almost f-algebra (A, *) and a natural number p ≧ 3, the set Π*p(A) = {f1 *… *fp: fk ∈ A, k = 1…p} is a uniformly complete semiprime f-algebra under the ordering and the multiplication inherited from A.
Generalizing earlier results of Katriňák, El-Assar and the present author we prove new structure theorems for l-algebras. We obtain necessary and sufficient conditions for the decomposition of an arbitrary bounded lattice into a direct product of (finitely) subdirectly irreducible lattices.
Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a twogenerator ordered group with these properties. Further, we establish subnormal verbal embedding of defect two of an arbitrary (soluble, fully ordered or torsion free) ordered group G into a group with these properties and of the same cardinality as G, and show in connection with a problem of Heineken that the defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered groups cannot in general be normal.
Pseudo-BL algebras are noncommutative generalizations of BL-algebras and they include pseudo-MV algebras, a class of structures that are categorically equivalent to l-groups with strong unit. In this paper we characterize directly indecomposable pseudo-BL algebras and we define and study different classes of these structures: local, good, perfect, peculiar, and (strongly) bipartite pseudo-BL algebras.