To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, by using the Leggett–Williams fixed point theorem, we prove the existence of three nonnegative solutions to second-order nonlinear impulsive differential equations with a three-point boundary value problem.
This paper concerns the spectrum of the r-dimensional Sturm–Liouville equation y″ + (λI − Q(x))y = 0 with the Dirichlet boundary conditions, where Q is an r × r symmetric matrix. It is proved that, under certain conditions on Q, this problem can only have a finite number of eigenvalues with multiplity r. Further discussion is given for the multiplicities of eigenvalues when Q is an r × r Jacobian matrix.
This paper presents existence criteria for continuous and discrete boundary value problems on the infinite interval, using the notion of upper and lower solution.
where , . The inversion problem for (1) is called regular in Lp if, uniformly in p∈[1, ∞] for any f(x)∈ Lp(R), equation (1) has a unique solution y(x)∈ Lp(R) of the form
with . Here G(x, t) is the Green function corresponding to (1) and c is an absolute constant. For a given s∈[l, ∞], necessary and sufficient conditions are obtained for assertions (2) and (3) to hold simultaneously:
(2) the inversion problem for (1) is regular in Lp;
The problem of finding a george joinning given points x0, x1 in a connected complete Riemannian manifold requires much more effort than determining a geodesic from initial data. Boundary value problems of this type are sometimes solved using shooting methods, which work best when good initial guesses are available expectually when x0, x1 are nearby. Galerkin methods have their drawbacks too. The situation is much more difficult with general variational problems, which is why we focus on the Riemannian case.
Our global algorithm is very simple to implement, and works well in practice, with no need for an initial guess. The proof of convergence to elementary and very carefully stated. with a view to possible generalizations latter on we have in mind the much larger class of interesting problems arising in optimal control especially from mechanical engineering.
The spectral function ρα(μ) (−∞<μ<∞) associated with the Sturm–Liouville equation
and a boundary condition
is a non-decreasing function of μ which is defined in terms of the Titchmarsh–Weyl function mα(λ) for (1.1) and (1.2). Thus, taking into account a standardization of the sign attached to mα(λ), we have
We establish a generalization of the Cesari-Kannan existence result for problems of the type Lx = N(x), x∈X where X is a separable Hilbert functional space, L is a selfadjoint linear differential operator with nontrivial finite dimensional kernel and N:X→X is a bounded continuous nonlinear operator. This generalization leads to new results when the dimension of the kernel of L is greater than one. Applications to systems of second order ordinary differential equations are given.
Existence principles are given for systems of differential equations with reflection of the argument. These are derived using fixed point analysis, specifically the Nonlinear Alternative. Then existence results are deduced for certain classes of first and second order equations with reflection of the argument.
We are concerned with existence results for nonlinear scalar Neumann boundary value problems u″ + g(x, u) = 0, u′(0) = u′(π) = 0 where g(x, u) satisfies Carathéodory conditions and is (possibly) unbounded. On the one hand we only assume that the function (sgn u)g(x, u) is bounded either from above or from below in some function space, and we impose conditions which relate the asymptotic behavior of the function (for¦u¦large) with the first two eigenvalues of the corresponding linear problem (here G(x, u) = is the potential generated by g). On the other hand we consider cases where the function (sgn u)g(x, u) is unbounded. The potential G(x, u) is not necessarily required to satisfy a convexity condition. Our method of proof is variational, we make use of the Saddle Point Theorem.
We study the bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one space variable by modifying a “time map” technique introduced by J. Smoller and A. Wasserman. We count the exact number of steady-state solutions which are totally ordered in an order interval. We are then able to find their Conley indices and thus determine their stabilities.
We consider the existence of multiple positive solutions of a nonlinear two-point boundary value problem by modifying a “time map” technique introduced by J. Smoller and A. Wasserman. We count the number of positive solutions and find their Conley indices and thus determine their stabilities.
Given two C1 -functions g: R → R, u: [0,1] → R such that u(0) = u(1) = 0, g(0) = 0, we prove that there exists c, with 0 < c < 1, such that u′(c) = g(u(c)). This result implies the classical Rolle's Theorem when g ≡ 0. Next we apply our result to prove the existence of solutions of the Dirichlet problem for the equation x′ = f(t, x, x′).
It is known [Herman Weyl, 1910] that every linear second-order differential expression L (with real coefficients) is such that Ly = λy (im λ ≠ 0) has at least one solution belonging to the class L2 = L2[0, ∞) of functions, the squares of whose moduli are Lebesgue-integrable on [0, ∞). This celebrated result was later proved by E. C. Titchmarsh (1940–1944), using sophisticated analysis of bilinear transformation. The aim of the present note is to prove the same result once again, but using only elementary analysis and school geometry. The power of this method will be appreciated further when one realises the amount of simplifications that can be acheived by this expressions. This part of the note course will be taken up in a subsequent paper.
The study of plasma instabilities has led to the question whether a certain third order linear differential equation involving a parameter p has solutions which vanish as x → ± ∞. Assuming existence, it is first easily shown that Rep must be positive and then, after a Fourier transform has changed the equation to one of second order, standard comparison equation techniques are used to obtain a contradiction, valid for large enough p.
We shall be concerned with two boundary value problems for the Falkner-Skan Equation
when –β is a small positive number. Our interest is in solutions of (1) which exhibit “reversed flow”; that is, solutions f such that f′(x) < 0 for small positive values of x. The boundary conditions which we wish to consider are