To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the following semilinear elliptic equation:
where B1 is the unit ball in ℝd, d ≥ 3, λ > 0 and p > 0. Firstly, following Merle and Peletier, we show that there exists an eigenvalue λp,∞ such that (*) has a solution (λp,∞,Wp) satisfying lim|x|→0Wp(x) = ∞. Secondly, we study a bifurcation diagram of regular solutions to (*). It follows from the result of Dancer that (*) has an unbounded bifurcation branch of regular solutions that emanates from (λ, u) = (0, 0). Here, using the singular solution, we show that the bifurcation branch has infinitely many turning points around λp,∞ when 3 ≤ d ≤ 9. We also investigate the Morse index of the singular solution in the d ≥ 11 case.
In this paper, inverse spectral problems for Sturm–Liouville operators on a tree (a graph without cycles) are studied. We show that if the potential on an edge is known a priori, then b – 1 spectral sets uniquely determine the potential functions on a tree with b external edges. Constructive solutions, based on the method of spectral mappings, are provided for the considered inverse problems.
This paper deals with the spectral properties of self-adjoint Schrödinger operators with δʹ-type conditions on infinite regular trees. Firstly, we discuss the semi-boundedness and self-adjointness of this kind of Schrödinger operator. Secondly, by using the form approach, we give the necessary and sufficient condition that ensures that the spectra of the self-adjoint Schrödinger operators with δʹ-type conditions are discrete.
In this paper we use U(2), the group of 2 × 2 unitary matrices, to parametrize the space of all self-adjoint boundary conditions for a fixed Sturm–Liouville equation on the interval [0, 1]. The adjoint action of U(2) on itself naturally leads to a refined classification of self-adjoint boundary conditions – each adjoint orbit is a subclass of these boundary conditions. We give explicit parametrizations of those adjoint orbits of principal type, i.e. orbits diffeomorphic to the 2-sphere S2, and investigate the behaviour of the nth eigenvalue λnas a function on such orbits.
We consider boundary-value problems for differential equations of second order containing a Brownian motion (random perturbation) and a small parameter and prove a special existence and uniqueness theorem for random solutions. We study the asymptotic behaviour of these solutions as the small parameter goes to zero and show the stochastic averaging theorem for such equations. We find the explicit limits for the solutions as the small parameter goes to zero.
Using variational methods and depending on a parameter $\unicode[STIX]{x1D706}$ we prove the existence of solutions for the following class of nonlocal boundary value problems of Kirchhoff type defined on an exterior domain $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{3}$:
A self-adjoint first-order system with Hermitian π-periodic potential Q(z), integrable on compact sets, is considered. It is shown that all zeros of are double zeros if and only if this self-adjoint system is unitarily equivalent to one in which Q(z) is π/2-periodic. Furthermore, the zeros of are all double zeros if and only if the associated self-adjoint system is unitarily equivalent to one in which Q(z) = σ2Q(z)σ2. Here, Δ denotes the discriminant of the system and σ0, σ2 are Pauli matrices. Finally, it is shown that all instability intervals vanish if and only if Q = rσ0 + qσ2, for some real-valued π-periodic functions r and q integrable on compact sets.
where H: [0,+∞) → ℝ and f : [0, 1] × ℝ → ℝ are continuous and λ > 0 is a parameter. We show that if H satisfies a boundedness condition on a specified compact set, then this, together with an assumption that H is either affine or superlinear at +∞, implies existence of at least one positive solution to the problem, even in the case where we impose no growth conditions on f. Finally, since it can hold that f(t, y) < 0 for all (t, y) ∈ [0, 1]×ℝ, the semipositone problem is included as a special case of the existence result.
A generalised Hermite spectral method for Fisher's equation in genetics with different asymptotic solution behaviour at infinities is proposed, involving a fully discrete scheme using a second order finite difference approximation in the time. The convergence and stability of the scheme are analysed, and some numerical results demonstrate its efficiency and substantiate our theoretical analysis.
We assume that this equation is correctly solvable in Lp(ℝ). Under these assumptions, we study the problem of compactness of the resolvent of the maximal continuously invertible Sturm–Liouville operator . Here
In the case p = 2, for the compact operator , we obtain two-sided sharp-by-order estimates of the maximal eigenvalue.
We show that the solution of the dynamic boundary value problem $y^{{\rm\Delta}{\rm\Delta}}=f(t,y,y^{{\rm\Delta}})$, $y(t_{1})=y_{1}$, $y(t_{2})=y_{2}$, on a general time scale, may be delta-differentiated with respect to $y_{1},~y_{2},~t_{1}$ and $t_{2}$. By utilising an analogue of a theorem of Peano, we show that the delta derivative of the solution solves the boundary value problem consisting of either the variational equation or its dynamic analogue along with interesting boundary conditions.
We prove new results on the existence, non-existence, localization and multiplicity of non-trivial solutions for perturbed Hammerstein integral equations. Our approach is topological and relies on the classical fixed-point index. Some of the criteria involve a comparison with the spectral radius of some related linear operators. We apply our results to some boundary-value problems with local and non-local boundary conditions of Neumann type. We illustrate in some examples the methodologies used.
For the third-order differential equation y′″ = ƒ(t, y, y′, y″), where , questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.
In this paper we consider the existence of a positive solution to boundary-value problems with non-local nonlinear boundary conditions, the archetypical example being −y″(t) = λf(t,y(t)), t ∈ (0, 1), y(0) = H(φ(y)), y(1) = 0. Here, H is a nonlinear function, λ > 0 is a parameter and φ is a linear functional that is realized as a Lebesgue—Stieltjes integral with signed measure. By requiring φ to decompose in a certain way, we show that this problem has at least one positive solution for each λ ∈ (0, λ0), for a number λ0 > 0 that is explicitly computable. We also give a separate result that holds for all λ > 0.
In this paper, we consider the dependence of eigenvalues of sixth-order boundary value problems on the boundary. We show that the eigenvalues depend not only continuously but also smoothly on boundary points, and that the derivative of the $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$th eigenvalue as a function of an endpoint satisfies a first-order differential equation. In addition, we prove that as the length of the interval shrinks to zero all higher eigenvalues of such boundary value problems march off to plus infinity. This is also true for the first (that is, lowest) eigenvalue.
In this paper, positive solutions of fractional differential equations with nonlinear terms depending on lower-order derivatives on a half-line are investigated. The positive extremal solutions and iterative schemes for approximating them are obtained by applying a monotone iterative method. An example is presented to illustrate the main results.
We discuss the multiplicity of nonnegative solutions of a parametric one-dimensional mean curvature problem. Our main effort here is to describe the configuration of the limits of a certain function, depending on the potential at zero, that yield, for certain values of the parameter, the existence of infinitely many weak nonnegative and nontrivial solutions. Moreover, thanks to a classical regularity result due to Lieberman, this sequence of solutions strongly converges to zero in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}C^1([0,1])$. Our approach is based on recent variational methods.
Let $\Omega $ be a bounded open interval, and let $p\gt 1$ and $q\in (0, p- 1)$. Let $m\in {L}^{{p}^{\prime } } (\Omega )$ and $0\leq c\in {L}^{\infty } (\Omega )$. We study the existence of strictly positive solutions for elliptic problems of the form $- (\vert {u}^{\prime } \mathop{\vert }\nolimits ^{p- 2} {u}^{\prime } ){\text{} }^{\prime } + c(x){u}^{p- 1} = m(x){u}^{q} $ in $\Omega $, $u= 0$ on $\partial \Omega $. We mention that our results are new even in the case $c\equiv 0$.
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a reaction term which exhibits a (p – 1)-superlinear growth near ±∞ but need not satisfy the Ambrosetti-Rabinowitz condition. Combining critical point theory with Morse theory we prove an existence theorem. Then, using variational methods together with truncation techniques, we prove a multiplicity theorem establishing the existence of at least five non-trivial solutions, with precise sign information for all of them (two positive solutions, two negative solutions and a nodal (sign changing) solution).