To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a stationary germ-grain model Ξ with convex and compact grains and the distance r(x) from x ε ℝd to Ξ. For almost all points x ε ℝd there exists a unique point p(x) in the boundary of Ξ such that r(x) is the length of the vector x-p(x), which is called the spherical contact vector at x. In this paper we relate the distribution of the spherical contact vector to the times it takes a typical boundary point of Ξ to hit another grain if all grains start growing at the same time and at the same speed. The notion of a typical point is made precise by using the generalized curvature measures of Ξ. The result generalizes a well known formula for the Boolean model. Specific examples are discussed in detail.
For a stationary point process X of sets in the convex ring in ℝd, a relation is given between the mean particles of the section process X ∩ E (where E varies through the set of k-dimensional subspaces in ℝd) and a mean particle of X. In particular, it is shown that the mean bodies of all planar sections of X determine the Blaschke body of X and hence the mean normal distribution of X.
Consider a continuum percolation model in which, at each point of a d-dimensional Poisson process of rate λ, a ball of radius 1 is centred. We show that, for any d ≧ 3, there exists a phase where both the regions, occupied and vacant, contain unbounded components. The proof uses the concept of enhancement for the Boolean model, and along the way we prove that the critical intensity of a Boolean model defined on a slab is strictly larger than the critical intensity of a Boolean model defined on the whole space.
On independent random points U1,· ··,Un distributed uniformly on [0, 1]d, a random graph Gn(x) is constructed in which two distinct such points are joined by an edge if the l∞-distance between them is at most some prescribed value 0 ≦ x ≦ 1. Almost-sure asymptotic rates of convergence/divergence are obtained for the maximum vertex degree of the random graph and related quantities, including the clique number, chromatic number and independence number, as the number n of points becomes large and the edge distance x is allowed to vary with n. Series and sequence criteria on edge distances {xn} are provided which guarantee the random graph to be empty of edges, a.s.
We study properties of the clusters of a system of fully penetrable balls, a model formed by centering equal-sized balls on the points of a Poisson process. We develop a formal expression for the density of connected clusters of k balls (called k-mers) in the system, first rigorously derived by Penrose [15]. Our integral expressions are free of inherent redundancies, making them more tractable for numerical evaluation. We also derive and evaluate an integral expression for the average volume of k-mers.
The shape of a rectangular prism in (d + 1)-dimensions is defined as Y = (Y1, Y2, · ··, Yd), Yn = Ln/Ln+1 where the Ln are the prism's edge lengths, in ascending order. We investigate shape distributions that are invariant when the prism is cut into two, also rectangular, prisms, with one prism retained for measurement and the other discarded. Interesting new distributions on [0, 1]d arise.
A rectangular tessellation is a covering of the plane by non-overlapping rectangles. A basic theory for general homogeneous random rectangular tessellations is developed, and it is shown that many first-order mean values may be expressed in terms of just three basic quantities. Corresponding values for independent superpositions of two or more such tessellations are derived. The most interesting homogeneous rectangular tessellations are those with only T-vertices (i.e. no X-vertices). Gilbert's (1967) isotropic model adapted to this two-orthogonal-orientations case, although simply specified, appears theoretically intractable, due to a complex ‘blocking' effect. However, the approximating penetration model, also introduced by Gilbert, is found to be both tractable and informative about the true model. A multi-stage method for simulating the model is developed, and the distributions of important characteristics estimated.
In design-based stereology, fixed parameters (such as volume, surface area, curve length, feature number, connectivity) of a non-random geometrical object are estimated by intersecting the object with randomly located and oriented geometrical probes (e.g. test slabs, planes, lines, points). Estimation accuracy may in principle be increased by increasing the number of probes, which are usually laid in a systematic pattern. An important prerequisite to increase accuracy, however, is that the relevant estimators are unbiased and consistent. The purpose of this paper is therefore to give sufficient conditions for the unbiasedness and strong consistency of design-based stereological estimators obtained by systematic sampling. Relevant mechanisms to increase sample size, compatible with stereological practice, are considered.
We consider two independent homogeneous Poisson processes Π0 and Π1 in the plane with intensities λ0 and λ1, respectively. We study additive functionals of the set of Π0-particles within a typical Voronoi Π1-cell. We find the first and the second moments of these variables as well as upper and lower bounds on their distribution functions, implying an exponential asymptotic behavior of their tails. Explicit formulae are given for the number and the sum of distances from Π0-particles to the nucleus within a typical Voronoi Π1-cell.
Families of Poisson processes defined on general state spaces and with the intensity measure scaled by a positive parameter are investigated. In particular, mean value relations with respect to the scale parameter are established and used to derive various Gamma-type results for certain geometric characteristics determined by finite subprocesses. In particular, we deduce Miles' complementary theorem. Applications of the results within stochastic geometry and particularly for random tessellations are discussed.
The problem addressed is to reverse the degradation which occurs when images are digitised: they are blurred, subjected to noise and rounding error, and sampled only at a lattice of points. Inference is considered for the fundamental case of binary scenes, binary data and isotropic blur. The inferential process is separable into two stages: first from the lattice points to a binary image in continuous space and then the reversal of thresholding and blur. Methods are motivated by, and illustrated using, an electron micrograph of an immunogold-labelled section of tulip virus.
The following question of V. Stakhovskii was passed to us by N. Dolbilin [4]. Take the barycentric subdivision of a triangle to obtain six triangles, then take the barycentric subdivision of each of these six triangles and so on; is it true that the resulting collection of triangles is dense (up to similarities) in the space of all triangles? We shall show that it is, but that, nevertheless, the process leads almost surely to a flat triangle (that is, a triangle whose vertices are collinear).
We show that a Poisson cluster point process is a nearest-neighbour Markov point process [2] if the clusters have uniformly bounded diameter. It is typically not a finite-range Markov point process in the sense of Ripley and Kelly [12]. Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour Markov point process, the resulting cluster process is also nearest-neighbour Markov, provided all clusters are non-empty. In particular, the nearest-neighbour Markov property is preserved when points of the process are independently randomly translated, but not when they are randomly thinned.
Methods of estimation of the oriented direction distribution (i.e. the distribution of unit outer normals over the boundary) of a planar set from the convex ring are proposed. The methods are based on an estimation of the area dilation of the investigated set by chosen test sets.
Is the intersection between an arbitrary but fixed plane and the spatial Poisson Voronoi tessellation a planar Voronoi tessellation? In this paper a negative answer is given to this long-standing question in stochastic geometry. The answer remains negative for the intersection between a t-dimensional linear affine space and the d-dimensional Poisson Voronoi tesssellation, where 2 ≦ t ≦ d − 1. Moreover, it is shown that each cell on this intersection is almost surely a non-Voronoi cell.
The object studied in this paper is a pair (Φ, Y), where Φ is a random surface in and Y a random vector field on . The pair is jointly stationary, i.e. its distribution is invariant under translations. The vector field Y is smooth outside Φ but may have discontinuities on Φ. Gauss' divergence theorem is applied to derive a flow conservation law for Y. For this specializes to a well-known rate conservation law for point processes. As an application, relationships for the linear contact distribution of Φ are derived.
Birth and death processes can be constructed as projections of higher-dimensional Poisson processes. The existence and uniqueness in the strong sense of the solutions of the time change problem are obtained. It is shown that the solution of the time change problem is equivalent to the solution of the corresponding martingale problem. Moreover, the processes obtained by the projection method are ergodic under translations.
The quadratic mean of the deviation between the probability content and the interior point proportion of a random convex hull in is investigated. We obtain, in particular, an explicit and distribution-independent bound.
A set-valued analog of the elementary renewal theorem for Minkowski sums of random closed sets is considered. The corresponding renewal function is defined aswhere are Minkowski (element-wise) sums of i.i.d. random compact convex sets. In this paper we determine the limit of H(tK)/t as t tends to infinity. For K containing the origin as an interior point,where hK(u) is the support function of K and is the set of all unit vectors u with EhA(u) > 0. Other set-valued generalizations of the renewal function are also suggested.
Johnson–Mehl tessellations can be considered as the results of spatial birth–growth processes. It is interesting to know when such a birth–growth process is completed within a bounded region. This paper deals with the limiting distributions of the time of completion for various models of Johnson–Mehl tessellations in ℝd and k-dimensional sectional tessellations, where 1 ≦ k < d, by considering asymptotic coverage probabilities of the corresponding Boolean models. Random fractals as the results of birth–growth processes are also discussed in order to show that a birth–growth process does not necessarily lead to a Johnson–Mehl tessellation.