We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider an M/G/1 queue that is idle at time 0. The number of customers sampled at an independent exponential time is shown to have the same geometric distribution under the preemptive-resume last-in-first-out and the processor-sharing disciplines. Hence, the marginal distribution of the queue length at any time is identical for both disciplines. We then give a detailed analysis of the time until the first departure for any symmetric queueing discipline. We characterize its distribution and show that it is insensitive to the service discipline. Finally, we study the tail behavior of this distribution.
The first purpose of this article is to study the phase transitions of a new interacting particle system. We consider two types of particle, each of which gives birth to particles of the same type as the parent. Particles of the second type can die, whereas those of the first type mutate into the second type. We prove that the three possible outcomes of the process, that is, extinction, survival of the type-2s, or coexistence, may each occur, depending on the selected parameters. Our second, and main, objective, however, is to investigate the duality properties of the process; the corresponding dual process exhibits a structure somewhat different to that of well-known particle systems.
We introduce a class of Cox cluster processes called generalised shot noise Cox processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process that drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can be random. Thereby, a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and, second, on how to simulate such processes. In particular, results on first- and second-order moment measures, reduced Palm distributions, the J-function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified in important special cases of GSNCPs, and we discuss their relation to the corresponding results for SNCPs.
In this paper, we study a monotone process maintenance model for a multistate system with k working states and ℓ failure states. By making different assumptions, we can apply the model to a multistate deteriorating system as well as to a multistate improving system. We show that the monotone process model for a multistate system is equivalent to a geometric process model for a two-state system. Then, for both the deteriorating and the improving system, we analytically determine an optimal replacement policy for minimizing the long-run average cost per unit time.
For a GI/G/c queue, a full busy period is an interval that begins when an arrival finds c − 1 customers in the system, and ends when, for the first time after that, a departure leaves behind c − 1 customers in the system. We present a probabilistic proof of conditions for full busy periods to have finite moments. For queues that empty, this result may be deduced from results in the literature, but our proof is much easier. For queues that do not empty, our proof still applies, and this result is new.
We consider a two-node Jackson network in which the buffer of node 1 is truncated. Our interest is in the limit of the tail decay rate of the queue-length distribution of node 2 when the buffer size of node 1 goes to infinity, provided that the stability condition of the unlimited network is satisfied. We show that there can be three different cases for the limit. This generalizes some recent results obtained for the tandem Jackson network. Special cases and some numerical examples are also presented.
Given a sequence of bounded random variables that satisfies a well-known mixing condition, it is shown that empirical estimates of the rate function for the partial sums process satisfy the large deviation principle in the space of convex functions equipped with the Attouch-Wets topology. As an application, a large deviation principle for estimating the exponent in the tail of the queue length distribution at a single-server queue with infinite waiting space is proved.
We show that a branching random walk that is supercritical on is also supercritical, in a rather strong sense, when restricted to a large enough finite ball of This implies that the critical value of branching random walks on finite balls converges to the critical value of branching random walks on as the radius increases to infinity. Our main result also implies coexistence of an arbitrary finite number of species for an ecological model.
Throw n points sequentially and at random onto a unit circle and append a clockwise arc (or rod) of length s to each such point. The resulting random set (the free gas of rods) is a union of a random number of clusters with random sizes modelling a free deposition process on a one-dimensional substrate. A variant of this model is investigated in order to take into account the role of the disorder, θ > 0; this involves Dirichlet(θ) distributions. For such free deposition processes with disorder θ, we shall be interested in the occurrence times and probabilities, as n grows, of two specific types of configurations: those avoiding overlapping rods (the hard-rod gas) and those for which the largest gap is smaller than the rod length s (the packing gas). Special attention is paid to the thermodynamic limit when ns = ρ for some finite density ρ of points. The occurrence of parking configurations, those for which hard-rod and packing constraints are both fulfilled, is then studied. Finally, some aspects of these problems are investigated in the low-disorder limit θ ↓ 0 as n ↑ ∞ while nθ = γ > 0. Here, Poisson-Dirichlet(γ) partitions play some role.
In this paper we consider some dependence properties and orders among multivariate distributions, and we study their preservation under mixtures. Applications of these results in reliability, risk theory, and mixtures of discrete distributions are provided.
We consider a failure-prone system operating in continuous time. Condition monitoring is conducted at discrete time epochs. The state of the system is assumed to evolve as a continuous-time Markov process with a finite state space. The observation process with continuous-range values is stochastically related to the state process, which, except for the failure state, is unobservable. Combining the failure information and the condition monitoring information, we derive a general recursive filter, and, as special cases, we obtain recursive formulae for the state estimation and other quantities of interest. Updated parameter estimates are obtained using the expectation-maximization (EM) algorithm. Some practical prediction problems are discussed and finally an illustrative example is given using a real dataset.
We consider the asymptotic behaviour of the stationary tail probabilities in the discrete-time GI/G/1-type queue with countable background state space. These probabilities are presented in matrix form with respect to the background state space, and shown to be the solution of a Markov renewal equation. Using this fact, we consider their decay rates. Applying the Markov renewal theorem, it is shown that certain reasonable conditions lead to the geometric decay of the tail probabilities as the level goes to infinity. We exemplify this result using a discrete-time priority queue with a single server and two types of customer.
In this paper we consider a system with two carousels operated by one picker. The items to be picked are randomly located on the carousels and the pick times follow a phase-type distribution. The picker alternates between the two carousels, picking one item at a time. Important performance characteristics are the waiting time of the picker and the throughput of the two carousels. The waiting time of the picker satisfies an equation very similar to Lindley's equation for the waiting time in the PH/U/1 queue. Although the latter equation has no simple solution, we show that the one for the waiting time of the picker can be solved explicitly. Furthermore, it is well known that the mean waiting time in the PH/U/1 queue depends on the complete interarrival time distribution, but numerical results show that, for the carousel system, the mean waiting time and throughput are rather insensitive to the pick-time distribution.
In this paper we use the exit time theory for Lévy processes to derive new closed-form results for the busy period distribution of finite-capacity fluid M/G/1 queues. Based on this result, we then obtain the busy period distribution for finite-capacity queues with on–off inputs when the off times are exponentially distributed.
We study a family of locally self-similar stochastic processes Y = {Y(t)}t∈ℝ with α-stable distributions, called linear multifractional stable motions. They have infinite variance and may possess skewed distributions. The linear multifractional stable motion processes include, in particular, the classical linear fractional stable motion processes, which have stationary increments and are self-similar with self-similarity parameter H. The linear multifractional stable motion process Y is obtained by replacing the self-similarity parameter H in the integral representation of the linear fractional stable motion process by a deterministic function H(t). Whereas the linear fractional stable motion is always continuous in probability, this is not in general the case for Y. We obtain necessary and sufficient conditions for the continuity in probability of the process Y. We also examine the effect of the regularity of the function H(t) on the local structure of the process. We show that under certain Hölder regularity conditions on the function H(t), the process Y is locally equivalent to a linear fractional stable motion process, in the sense of finite-dimensional distributions. We study Y by using a related α-stable random field and its partial derivatives.
We consider an M/GI/1 queue with two types of customers, positive and negative, which cancel each other out. The server provides service to either a positive customer or a negative customer. In such a system, the queue length can be either positive or negative and an arrival either joins the queue, if it is of the same sign, or instantaneously removes a customer of the opposite sign at the end of the queue or in service. This study is a generalization of Gelenbe's original concept of a queue with negative customers, where only positive customers need services and negative customers arriving at an empty system are lost or need no service. In this paper, we derive the transient and the stationary probability distributions for the major performance measures in terms of generating functions and Laplace transforms. It has been shown that the previous results for the system with negative arrivals of zero service time are special cases of our model. In addition, we obtain the stationary waiting time distribution of this system in terms of a Laplace transform.
We consider the problem of scheduling the transmissions of multiple data users (flows) sharing the same wireless channel (server). The unique feature of this problem is the fact that the capacity (service rate) of the channel varies randomly with time and asynchronously for different users. We study a scheduling policy called the exponential scheduling rule, which was introduced in an earlier paper. Given a system with N users, and any set of positive numbers {an}, n = 1, 2,…, N, we show that in a heavy-traffic limit, under a nonrestrictive ‘complete resource pooling’ condition, this algorithm has the property that, for each time t, it (asymptotically) minimizes maxnanq̃n(t), where q̃n(t) is the queue length of user n in the heavy-traffic regime.
We consider a Brownian motion with time-reversible Markov-modulated speed and two reflecting barriers. A methodology depending on a certain multidimensional martingale together with some linear algebra is applied in order to explicitly compute the stationary distribution of the joint process of the content level and the state of the underlying Markov chain. It is shown that the stationary distribution is such that the two quantities are independent. The long-run average push at the two barriers at each of the states is also computed.
We present several results refining and extending those of Neuts and Alfa on weak convergence of the pair-formation process when arrivals follow two independent Poisson processes. Our results are obtained using a different, more straightforward, and apparently simpler probabilistic approach. Firstly, we give a very short proof of the fact that the convergence of the pair-formation process to a Poisson process actually holds in total variation (with a bound for convergence rate). Secondly, we extend the result of the theorem to the case of multiple labels: there are d independent arrival Poisson processes, and we are looking at the epochs when d-tuples are formed. Thirdly, we extend the original (weak convergence) result to the case when arrivals follow independent renewal processes (this extension is also valid for the d-tuple formation).
We consider a stochastic model describing the growth of two competing infections on ℝd. The growth takes place by way of spherical outbursts in the infected region, an outburst in the type-1 or -2 infected region causing all previously uninfected points within a stochastic distance from the outburst location to become type-1 or -2 infected, respectively. The main result is that, if the infection types have the same intensity, then there is a strictly positive probability that both infection types grow unboundedly.