To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss the Singer conjecture and Gromov–Lück inequality $\chi\geq |\sigma|$ for aspherical complex surfaces. We give a proof of the Singer conjecture for aspherical complex surfaces with residually finite fundamental group that does not rely on Gromov’s Kähler groups theory. Without the residually finiteness assumption, we observe that this conjecture can be proven for all aspherical complex surfaces except possibly those in Class $\mathrm{VII}_0^+$ (a positive answer to the global spherical shell conjecture would rule out the existence of aspherical surfaces in this class). We also sharpen the Gromov-Lück inequality for aspherical complex surfaces that are not in Class $\mathrm{VII}_0^+$. This is achieved by connecting the circle of ideas of the Singer conjecture with the study of Reid’s conjecture.
We prove the coherence of multiplier submodule sheaves associated with Griffiths semi-positive singular hermitian metrics over holomorphic vector bundles on complex manifolds which have no nontrivial subvarieties, such as generic complex tori.
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of relative invariants.
For a Lie algebra ${\mathfrak g}$ of holomorphic vector fields on a complex manifold M, any holomorphic ${\mathfrak g}$-invariant hypersurface is given in terms of a ${\mathfrak g}$-invariant divisor. This generalizes the classical notion of scalar relative ${\mathfrak g}$-invariant. Any ${\mathfrak g}$-invariant divisor gives rise to a ${\mathfrak g}$-equivariant line bundle, and a large part of this paper is therefore devoted to the investigation of the group $\mathrm {Pic}_{\mathfrak g}(M)$ of ${\mathfrak g}$-equivariant line bundles. We give a cohomological description of $\mathrm {Pic}_{\mathfrak g}(M)$ in terms of a double complex interpolating the Chevalley-Eilenberg complex for ${\mathfrak g}$ with the Čech complex of the sheaf of holomorphic functions on M.
We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a characterization of them with our general theory. Examples, including projective geometry of curves and second-order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some classical computations. At the end, we briefly discuss generalizations of this theory.
In this paper, we present an extension theorem which is equivalent to an injectivity theorem on the cohomology groups of vector bundles equipped with singular Hermitian metrics over holomorphically convex Kähler manifolds.
Let X be a compact Kähler manifold, and let $L \rightarrow X$ be a holomorphic line bundle equipped with a singular metric h such that the curvature $\mathrm {i}\Theta _{L,h}\geqslant 0$ in the sense of currents. The main result of this paper is the vanishing of $H^n(X,\mathcal {O}(\Omega ^p_X\otimes L)\otimes \mathcal {I}(h))$ for $p\geqslant n-\operatorname {nd}(L,h)+1$, which generalizes Bogomolov’s vanishing theorem and Watanabe’s result.
Using $L^2$-methods, we prove a vanishing theorem for tame harmonic bundles over quasi-compact Kähler manifolds in a very general setting. As a special case, we give a completely new proof of the Kodaira-type vanishing theorems for Higgs bundles due to Arapura. To prove our vanishing theorem, we construct a fine resolution of the Dolbeault complex for tame harmonic bundles via the complex of sheaves of $L^2$-forms, and we establish the Hörmander $L^2$-estimate and solve $(\bar {\partial }_E+\theta )$-equations for Higgs bundles $(E,\theta )$.
Let $f:X\to Y$ be a surjective projective map, and let L be a holomorphic line bundle on X equipped with a (singular) semi-positive Hermitian metric h. In this article, by studying the canonical metric on the direct image sheaf of the twisted relative canonical bundles $K_{X/Y}\otimes L\otimes \mathscr {I}(h)$, we obtain that this metric has dual Nakano semi-positivity when h is smooth and there is no deformation by f and that this metric has locally Nakano semi-positivity in the singular sense when h is singular.
In this paper, we define two types of strongly decomposable positivity, which serve as generalizations of (dual) Nakano positivity and are stronger than the decomposable positivity introduced by S. Finski. We provide the criteria for strongly decomposable positivity of type I and type II and prove that the Schur forms of a strongly decomposable positive vector bundle of type I are weakly positive, while the Schur forms of a strongly decomposable positive vector bundle of type II are positive. These answer a question of Griffiths affirmatively for strongly decomposably positive vector bundles. Consequently, we present an algebraic proof of the positivity of Schur forms for (dual) Nakano positive vector bundles, which was initially proven by S. Finski.
In this article, we present a concavity property of the minimal $L^{2}$ integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal $L^2$ extension problem on open Riemann surfaces with weights may not be subharmonic.
We consider a holomorphic family $f:\mathscr {X} \to S$ of compact complex manifolds and a line bundle $\mathscr {L}\to \mathscr {X}$. Given that $\mathscr {L}^{-1}$ carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor $\mathscr {D}$, the direct image $f_*(K_{\mathscr {X}/S}\otimes \mathscr {D} \otimes \mathscr {L})$ carries a smooth hermitian metric. If $\mathscr {L}$ is relatively positive, we give an explicit formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover, we show that it improves the general positivity result of Berndtsson-Păun in a special situation of a big line bundle.
In this paper, we study the coherence of a higher rank analogue of a multiplier ideal sheaf. Key tools of the study are Hörmander’s $L^2$-estimate and a singular version of a Demailly–Skoda-type result.
We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$-metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric with the same property. We also give an extremal characterization of Kobayashi curvature for Finsler metrics.
In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric $\omega $ such that $(T_X,\omega )$ is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on $T_X$.
We define and study jet bundles in the geometric orbifold category. We show that the usual arguments from the compact and the logarithmic settings do not all extend to this more general framework. This is illustrated by simple examples of orbifold pairs of general type that do not admit any global jet differential, even if some of these examples satisfy the Green–Griffiths–Lang conjecture. This contrasts with an important result of Demailly (Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q. 7 (2011), 1165–1207) proving that compact varieties of general type always admit jet differentials. We illustrate the usefulness of the study of orbifold jets by establishing the hyperbolicity of some orbifold surfaces, that cannot be derived from the current techniques in Nevanlinna theory. We also conjecture that Demailly's theorem should hold for orbifold pairs with smooth boundary divisors under a certain natural multiplicity condition, and provide some evidence towards it.
Let $M$ and $N$ be two compact complex manifolds. We show that if the tautological line bundle ${\mathcal{O}}_{T_{M}^{\ast }}(1)$ is not pseudo-effective and ${\mathcal{O}}_{T_{N}^{\ast }}(1)$ is nef, then there is no non-constant holomorphic map from $M$ to $N$. In particular, we prove that any holomorphic map from a compact complex manifold $M$ with RC-positive tangent bundle to a compact complex manifold $N$ with nef cotangent bundle must be a constant map. As an application, we obtain that there is no non-constant holomorphic map from a compact Hermitian manifold with positive holomorphic sectional curvature to a Hermitian manifold with non-positive holomorphic bisectional curvature.
We prove that a reduced and irreducible algebraic surface in $\mathbb{CP}^{3}$ containing infinitely many twistor lines cannot have odd degree. Then, exploiting the theory of quaternionic slice regularity and the normalisation map of a surface, we give constructive existence results for even degrees.
Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.
Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$. We show that if a line bundle $L$ is $(n-1)$-ample, then it is $(n-1)$-positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
Let $X$ be a compact Kähler manifold and let $(L,{\it\varphi})$ be a pseudo-effective line bundle on $X$. We first define a notion of numerical dimension for pseudo-effective line bundles with singular metrics, and then discuss the properties of this numerical dimension. Finally, we prove a very general Kawamata–Viehweg–Nadel-type vanishing theorem on an arbitrary compact Kähler manifold.