Müntz-Legendre polynomials   ${{L}_{n}}\left( \Lambda ;\,x \right)$  associated with a sequence
 ${{L}_{n}}\left( \Lambda ;\,x \right)$  associated with a sequence   $\Lambda \,=\,\left\{ {{\lambda }_{k}} \right\}$  are obtainedby orthogonalizing the system
 $\Lambda \,=\,\left\{ {{\lambda }_{k}} \right\}$  are obtainedby orthogonalizing the system   $\left( {{x}^{{{\lambda }_{0}}}},{{x}^{{{\lambda }_{1}}}},{{x}^{{{\lambda }_{2}}}},... \right)$  in
 $\left( {{x}^{{{\lambda }_{0}}}},{{x}^{{{\lambda }_{1}}}},{{x}^{{{\lambda }_{2}}}},... \right)$  in   ${{L}_{2}}\left[ 0,1 \right]$  with respect to the Legendre weight. Ifthe
 ${{L}_{2}}\left[ 0,1 \right]$  with respect to the Legendre weight. Ifthe   ${{\lambda }_{k}}\text{ }\!\!'\!\!\text{ s}$  are distinct, it is well known that
 ${{\lambda }_{k}}\text{ }\!\!'\!\!\text{ s}$  are distinct, it is well known that   ${{L}_{n}}\left( \Lambda ;\,x \right)$  has exactly
 ${{L}_{n}}\left( \Lambda ;\,x \right)$  has exactly   $n$  zeros
 $n$  zeros   ${{l}_{n,n}}\,<\,{{l}_{n-1,n}}\,<\,\cdot \cdot \cdot \,<\,{{l}_{2,n}}\,<\,{{l}_{1,n}}$  on
 ${{l}_{n,n}}\,<\,{{l}_{n-1,n}}\,<\,\cdot \cdot \cdot \,<\,{{l}_{2,n}}\,<\,{{l}_{1,n}}$  on   $\left( 0,1 \right)$ .
 $\left( 0,1 \right)$ .
First we prove the following global bound for the smallest zero,
   $$\exp \left( -4\sum\limits_{j=0}^{n}{\frac{1}{2\text{ }\!\!\lambda\!\!\text{ j}\,\text{+}\,\text{1}}} \right)\,<\,{{l}_{n,n}}.$$
 $$\exp \left( -4\sum\limits_{j=0}^{n}{\frac{1}{2\text{ }\!\!\lambda\!\!\text{ j}\,\text{+}\,\text{1}}} \right)\,<\,{{l}_{n,n}}.$$  
An important consequence is that if the associated Müntz space is non-dense in   ${{L}_{2}}\left[ 0,1 \right]$ , then
 ${{L}_{2}}\left[ 0,1 \right]$ , then
   $$\underset{n}{\mathop{\inf }}\,\,{{x}_{n,n}}\,\ge \,\exp \,\left( -4\,\sum\limits_{j=0}^{\infty }{\frac{1}{2{{\text{ }\!\!\lambda\!\!\text{ }}_{j}}\,+\,1}} \right)\,>\,0,$$
 $$\underset{n}{\mathop{\inf }}\,\,{{x}_{n,n}}\,\ge \,\exp \,\left( -4\,\sum\limits_{j=0}^{\infty }{\frac{1}{2{{\text{ }\!\!\lambda\!\!\text{ }}_{j}}\,+\,1}} \right)\,>\,0,$$  
so the elements   ${{L}_{n}}\left( \Lambda ;\,x \right)$  have no zeros close to 0.
 ${{L}_{n}}\left( \Lambda ;\,x \right)$  have no zeros close to 0.
Furthermore, we determine the asymptotic behavior of the largest zeros; for   $k$  fixed,
 $k$  fixed,
   $$\underset{n\to \infty }{\mathop{\lim }}\,\,\left| \log \,{{l}_{k,n}} \right|\,\sum\limits_{j=0}^{n}{\left( 2{{\text{ }\!\!\lambda\!\!\text{ }}_{j}}\,+\,1 \right)}\,=\,{{\left( \frac{jk}{2} \right)}^{2}},$$
 $$\underset{n\to \infty }{\mathop{\lim }}\,\,\left| \log \,{{l}_{k,n}} \right|\,\sum\limits_{j=0}^{n}{\left( 2{{\text{ }\!\!\lambda\!\!\text{ }}_{j}}\,+\,1 \right)}\,=\,{{\left( \frac{jk}{2} \right)}^{2}},$$  
where   ${{j}_{k}}$  denotes the
 ${{j}_{k}}$  denotes the   $k$ -th zero of the Bessel function
 $k$ -th zero of the Bessel function   ${{J}_{0}}.$
 ${{J}_{0}}.$