This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/dataandpolicy.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The rise of visually driven platforms like Instagram has reshaped how information is shared and understood. This study examines the role of social, cultural, and political (SCP) symbols in Instagram posts during Taiwan’s 2024 election, focusing on their influence in anti-misinformation efforts. Using large language models (LLMs)—GPT-4 Omni and Gemini Pro Vision—we analyzed thousands of posts to extract and classify symbolic elements, comparing model performance in consistency and interpretive depth. We evaluated how SCP symbols affect user engagement, perceptions of fairness, and content spread. Engagement was measured by likes, while diffusion patterns followed the SEIZ epidemiological model. Findings show that posts featuring SCP symbols consistently received more interaction, even when follower counts were equal. Although political content creators often had larger audiences, posts with cultural symbols drove the highest engagement, were perceived as more fair and trustworthy, and spread more rapidly across networks. Our results suggest that symbolic richness influences online interactions more than audience size. By integrating semiotic analysis, LLM-based interpretation, and diffusion modeling, this study offers a novel framework for understanding how symbolic communication shapes engagement on visual platforms. These insights can guide designers, policymakers, and strategists in developing culturally resonant, symbol-aware messaging to combat misinformation and promote credible narratives.
The capabilities of large language models (LLMs) have advanced to the point where entire textbooks can be queried using retrieval-augmented generation (RAG), enabling AI to integrate external, up-to-date information into its responses. This study evaluates the ability of two OpenAI models, GPT-3.5 Turbo and GPT-4 Turbo, to create and answer exam questions based on an undergraduate textbook. 14 exams were created with four true-false, four multiple-choice, and two short-answer questions derived from an open-source Pacific Studies textbook. Model performance was evaluated with and without access to the source material using text-similarity metrics such as ROUGE-1, cosine similarity, and word embeddings. Fifty-six exam scores were analyzed, revealing that RAG-assisted models significantly outperformed those relying solely on pre-trained knowledge. GPT-4 Turbo also consistently outperformed GPT-3.5 Turbo in accuracy and coherence, especially in short-answer responses. These findings demonstrate the potential of LLMs in automating exam generation while maintaining assessment quality. However, they also underscore the need for policy frameworks that promote fairness, transparency, and accessibility. Given regulatory considerations outlined in the European Union AI Act and the NIST AI Risk Management Framework, institutions using AI in education must establish governance protocols, bias mitigation strategies, and human oversight measures. The results of this study contribute to ongoing discussions on responsibly integrating AI in education, advocating for institutional policies that support AI-assisted assessment while preserving academic integrity. The empirical results suggest not only performance benefits but also actionable governance mechanisms, such as verifiable retrieval pipelines and oversight protocols, that can guide institutional policies.
Following the large-scale Russian invasion in February 2022, policymakers and humanitarian actors urgently sought to anticipate displacement flows within Ukraine. However, existing internal displacement data systems had not been adapted to contexts as dynamic as a full-fledged war marked by uneven trigger events. A year and a half later, policymakers and practitioners continue to seek forecasts, needing to anticipate how many internally displaced persons (IDPs) can be expected to return to their areas of origin and how many will choose to stay and seek a durable solution in their place of displacement. This article presents a case study of an anticipatory approach deployed by the International Organization for Migration (IOM) Mission in Ukraine since March 2022, delivering nationwide displacement figures less than 3 weeks following the invasion alongside near real-time data on mobility intentions as well as key data anticipating the timing, direction, and volume of future flows and needs related to IDP return and (re)integration. The authors review pre-existing mobility forecasting approaches, then discuss practical experiences with mobility prediction applications in the Ukraine response using the Ukraine General Population Survey (GPS), including in program and policy design related to facilitating durable solutions to displacement. The authors focus on the usability and ethics of the approach, already considered for replication in other displacement contexts.
Achieving Zero Hunger by 2030, a United Nations Sustainable Development Goal, requires resilient food systems capable of securely feeding billions. This article introduces the Food Systems Resilience Score (FSRS), a novel framework that adapts a proven resilience measurement approach to the context of food systems. The FSRS builds on the success of the Community Flood Resilience Measurement Tool, which has been used in over 110 communities, by applying its five capitals (natural, human, social, financial, and manufactured) and four qualities (robustness, redundancy, resourcefulness, and rapidity) framework to food systems. We define food system resilience as the capacity to ensure adequate, appropriate, and accessible food supply to all, despite various disturbances and unforeseen disruptions. The FSRS measures resilience across multiple dimensions using carefully selected existing indicators, ensuring broad applicability and comparability. Our methodology includes rigorous technical validation to ensure reliability, including optimal coverage analysis, stability checks, and sensitivity testing. By providing standardized metrics and a comprehensive assessment of food system resilience, this framework not only advances research but also equips policymakers with valuable tools for effective interventions. The FSRS enables comparative analysis between countries and temporal tracking of resilience changes, facilitating targeted strategies to build and maintain resilient national food systems. This work contributes to the global effort toward long-term food security and sustainability.
Federated learning (FL) is a machine learning technique that distributes model training to multiple clients while allowing clients to keep their data local. Although the technique allows one to break free from data silos keeping data local, to coordinate such distributed training, it requires an orchestrator, usually a central server. Consequently, organisational issues of governance might arise and hinder its adoption in both competitive and collaborative markets for data. In particular, the question of how to govern FL applications is recurring for practitioners. This research commentary addresses this important issue by inductively proposing a layered decision framework to derive organisational archetypes for FL’s governance. The inductive approach is based on an expert workshop and post-workshop interviews with specialists and practitioners, as well as the consideration of real-world applications. Our proposed framework assumes decision-making occurs within a black box that contains three formal layers: data market, infrastructure, and ownership. Our framework allows us to map organisational archetypes ex-ante. We identify two key archetypes: consortia for collaborative markets and in-house deployment for competitive settings. We conclude by providing managerial implications and proposing research directions that are especially relevant to interdisciplinary and cross-sectional disciplines, including organisational and administrative science, information systems research, and engineering.
This study explores the potential of applying machine learning (ML) methods to identify and predict areas at risk of food insufficiency using a parsimonious set of publicly available data sources. We combine household survey data that captures monthly reported food insufficiency with remotely sensed measures of factors influencing crop production and maize price observations at the census enumeration area (EA) in Malawi. We consider three machine-learning models of different levels of complexity suitable for tabular data (TabNet, random forests, and LASSO) and classical logistic regression and examine their performance against the historical occurrence of food insufficiency. We find that the models achieve similar accuracy levels with differential performance in terms of precision and recall. The Shapley additive explanation decomposition applied to the models reveals that price information is the leading contributor to model fits. A possible explanation for the accuracy of simple predictors is the high spatiotemporal path dependency in our dataset, as the same areas of the country are repeatedly affected by food crises. Recurrent events suggest that immediate and longer-term responses to food crises, rather than predicting them, may be the bigger challenge, particularly in low-resource settings. Nonetheless, ML methods could be useful in filling important data gaps in food crises prediction, if followed by measures to strengthen food systems affected by climate change. Hence, we discuss the tradeoffs in training these models and their use by policymakers and practitioners.
Data governance has emerged as a pivotal area of study over the past decade, yet despite its growing importance, a comprehensive analysis of the academic literature on this subject remains notably absent. This paper addresses this gap by presenting a systematic review of all academic publications on data governance from 2007 to 2024. By synthesizing insights from more than 3500 documents authored by more than 9000 researchers across various sources, this study offers a broad yet detailed perspective on the evolution of data governance research.
In recent decades, researchers have analyzed professional military education (PME) organizations to understand the characteristics and transformation of the core of military culture, the officer corps. Several historical studies have demonstrated the potential of this approach, but they were limited by both theoretical and methodological hurdles. This paper presents a new historical-institutionalist framework for analyzing officership and PME, integrating computational social science methods for large-scale data collection and analysis to overcome limited access to military environments and the intensive manual labor required for data collection and analysis. Furthermore, in an era where direct demographic data are increasingly being removed from the public domain, our indirect estimation methods provide one of the few viable alternatives for tracking institutional change. This approach will be demonstrated using web-scraping and a quantitative text analysis of the entire repository of theses from an elite American military school.
While the Sustainable Development Goals (SDGs) were being negotiated, global policymakers assumed that advances in data technology and statistical capabilities, what was dubbed the “data revolution”, would accelerate development outcomes by improving policy efficiency and accountability. The 2014 report to the United Nations Secretary General, “A World That Counts” framed the data-for-development agenda, and proposed four pathways to impact: measuring for accountability, generating disaggregated and real-time data supplies, improving policymaking, and implementing efficiency. The subsequent experience suggests that while many recommendations were implemented globally to advance the production of data and statistics, the impact on SDG outcomes has been inconsistent. Progress towards SDG targets has stalled despite advances in statistical systems capability, data production, and data analytics. The coherence of the SDG policy agenda has undoubtedly improved aspects of data collection and supply, with SDG frameworks standardizing greater indicator reporting. However, other events, including the response to COVID-19, have played catalytic roles in statistical system innovation. Overall, increased financing for statistical systems has not materialized, though planning and monitoring of these national systems may have longer-term impacts. This article reviews how assumptions about the data revolution have evolved and where new assumptions are necessary to advance the impact across the data value chain. These include focusing on measuring what matters most for decision-making needs across polycentric institutions, leveraging the SDGs for global data standardization and strategic financial mobilization, closing data gaps while enhancing policymaker analytic capabilities, and fostering collective intelligence to drive data innovation, credible information, and sustainable development outcomes.
The coupling of the disruptive processes of digitalization and the green transformation in a so-called “Twin Transformation” is already being considered a strategic step within the European Union and is discussed in the academic sphere. Strategically, this coupling is necessary and meaningful to realize synergies and to avoid counterproductive effects, such as rebound effects or lock-in effects, particularly given the time constraints imposed by climate change. The European data strategy not only calls for the establishment of various data spaces, such as the data space for the European Green New Deal, but also calls for the opening, integration, and utilization of European data for stakeholders from administration, business, and civil society. Considering this, it is argued that administrative informatics as a discipline could be integrated as an additional analytical perspective into the political science heuristic of the policy cycle. This integration offers substantial added value for analyzing and shaping the policy processes of the European Green transformation. Moreover, this heuristic approach enables the ex-ante prediction of changes in policymaking based on the theories, models, methods, and application areas of administrative informatics. Building on this premise, this article provides insights into the application of the proposed heuristic using the example of the European Green transformation. It analyzes the resulting implications for the analysis of policymaking considering an increasingly digitalized public administration.
Global food security worsened during the COVID-19 pandemic. In Nigeria, food security indicators increased in the first months of the pandemic and then decreased slightly but never returned to their pre-pandemic levels. We assess if savings groups provided household coping mechanisms during COVID-19 in Nigeria by combining the in-person LSMS-ISA/GHS-2018/19 with four rounds of the Nigerian Longitudinal Phone Survey collected during the first year of the pandemic. A quasi-difference-in-differences analysis setup leveraging the panel nature of the data indicates that savings group membership reduces the likelihood of skipping a meal but finds no statistically significant effect on the likelihood of running out of food or eating fewer kinds of food. Given theoretical priors and other literature positing a relationship, we also implement an OLS regression analysis controlling for baseline values finding that having at least one female household member in a savings group is associated with a 5–15% reduction in the likelihood of reporting skipping meals, running out of food, and eating fewer kinds of food. This analysis is not able to establish causality, however, and may in fact overestimate the effects. Together, the results indicate that savings group membership is positively associated with food security after COVID-19, but the causal effect is statistically significant for only one of the three food security indicators. To conclude, considering the interest in savings groups and expectations of continued food security shocks, the importance of collecting better gender-disaggregated longitudinal household data combined with experimental designs and institutional data on savings groups.
In this editorial, we draw insights from a special collection of peer-reviewed papers investigating how new data sources and technology can enhance peace. The collection examines local and global practices that strive towards positive peace through the responsible use of frontier technologies. In particular, the articles of the collection illustrate how advanced techniques—including machine learning, network analysis, specialised text classifiers, and large-scale predictive analytics—can deepen our understanding of conflict dynamics by revealing subtle interdependencies and patterns. Others assess innovative approaches reinterpreting peace as a relational phenomenon. Collectively, they assess ethical, technical, and governance challenges while advocating balanced frameworks that ensure accountability alongside innovation. The collection offers a practical roadmap for integrating technical tools into peacebuilding to foster resilient societies and non-violent conflict transformations.
This article examines the impact of generative artificial intelligence (GAI) on higher education, emphasizing its effects in the broader educational contexts. As AI continues to reshape the landscape of teaching and learning, it is imperative for higher education institutions to adapt rapidly to equip graduates for the challenges of a progressively automated global workforce. However, a critical question emerges: will GAI lead to a more inclusive future of learning, or will it deepen existing divides and create a future where educational access and success are increasingly unequal? This study employs both theoretical and empirical approaches to explore the transformative potential of GAI. Drawing upon the literature on AI and education, we establish a framework that categorizes the essential knowledge and skills needed by graduates in the GAI era. This framework includes four key capability sets: AI ethics, AI literacy (focusing on human-replacement technologies), human–AI collaboration (emphasizing human augmentation), and human-distinctive capacities (highlighting unique human intelligence). Our empirical analysis involves scrutinizing GAI policy documents and the core curricula mandated for all graduates across leading Asian universities. Contrary to expectations of a uniform AI-driven educational transformation, our findings expose significant disparities in AI readiness and implementation among these institutions. These disparities, shaped by national and institutional specifics, are likely to exacerbate existing inequalities in educational outcomes, leading to divergent futures for individuals and universities alike in the age of GAI. Thus, this article not only maps the current landscape but also forecasts the widening educational gaps that GAI might engender.
Participation is a prevalent topic in many areas, and data-driven projects are no exception. While the term generally has positive connotations, ambiguities in participatory approaches between facilitators and participants are often noted. However, how facilitators can handle these ambiguities has been less studied. In this paper, we conduct a systematic literature review of participatory data-driven projects. We analyse 27 cases regarding their openness for participation and where participation most often occurs in the data life cycle. From our analysis, we describe three typical project structures of participatory data-driven projects, combining a focus on labour and resource participation and/or rule- and decision-making participation with the general set-up of the project as participatory-informed or participatory-at-core. From these combinations, different ambiguities arise. We discuss mitigations for these ambiguities through project policies and procedures for each type of project. Mitigating and clarifying ambiguities can support a more transparent and problem-oriented application of participatory processes in data-driven projects.
We interrogate efforts to legislate artificial intelligence (AI) through Canada’s Artificial Intelligence and Data Act (AIDA) and argue it represents a series of missed opportunities that so delayed the Act that it died. We note how much of this bill was explicitly tied to economic development and implicitly tied to a narrow jurisdictional form of shared prosperity. Instead, we contend that the benefits of AI are not shared but disproportionately favour specific groups, in this case, the AI industry. This trend appears typical of many countries’ AI and data regulations, which tend to privilege the few, despite promises to favour the many. We discuss the origins of AIDA, drafted by Canada’s federal Department for Innovation Science and Economic Development (ISED). We then consider four problems: (1) AIDA relied on public trust in a digital and data economy; (2) ISED tried to both regulate and promote AI and data; (3) Public consultation was insufficient for AIDA; and (4) Workers’ rights in Canada and worldwide were excluded in AIDA. Without strong checks and balances built into regulation like AIDA, innovation will fail to deliver on its claims. We recommend the Canadian government and, by extension, other governments invest in an AI act that prioritises: (1) Accountability mechanisms and tools for the public and private sectors; (2) Robust workers’ rights in terms of data handling; and (3) Meaningful public participation in all stages of legislation. These policies are essential to countering wealth concentration in the industry, which would stifle progress and widespread economic growth.
This commentary examines the dual role of artificial intelligence (AI) in shaping electoral integrity and combating misinformation, with a focus on the 2025 Philippine elections. It investigates how AI has been weaponised to manipulate narratives and suggests strategies to counteract disinformation. Drawing on case studies from the Philippines, Taiwan, and India—regions in the Indo-Pacific with vibrant democracies, high digital engagement, and recent experiences with election-related misinformation—it highlights the risks of AI-driven content and the innovative measures used to address its spread. The commentary advocates for a balanced approach that incorporates technological solutions, regulatory frameworks, and digital literacy to safeguard democratic processes and promote informed public participation. The rise of generative AI tools has significantly amplified the risks of disinformation, such as deepfakes, and algorithmic biases. These technologies have been exploited to influence voter perceptions and undermine democratic systems, creating a pressing need for protective measures. In the Philippines, social media platforms have been used to spread revisionist narratives, while Taiwan employs AI for real-time fact-checking. India’s proactive approach, including a public misinformation tipline, showcases effective countermeasures. These examples highlight the complex challenges and opportunities presented by AI in different electoral contexts. The commentary stresses the need for regulatory frameworks designed to address AI’s dual-use nature, advocating for transparency, real-time monitoring, and collaboration between governments, civil society, and the private sector. It also explores the criteria for effective AI solutions, including scalability, adaptability, and ethical considerations, to guide future interventions. Ultimately, it underscores the importance of digital literacy and resilient information ecosystems in supporting informed democratic participation.