Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:05:46.558Z Has data issue: false hasContentIssue false

Musicality as a predictive process

Published online by Cambridge University Press:  30 September 2021

Nils Kraus
Affiliation:
Department of General and Biological Psychology, Psychologische Hochschule Berlin, 10179Berlin, Germanyn.kraus@phb.de Department of Experimental Psychology and Neuropsychology, Freie Universität Berlin, 14195Berlin, Germany. g.hesselmann@phb.de
Guido Hesselmann
Affiliation:
Department of General and Biological Psychology, Psychologische Hochschule Berlin, 10179Berlin, Germanyn.kraus@phb.de

Abstract

Savage et al. argue for musicality as having evolved for the overarching purpose of social bonding. By way of contrast, we highlight contemporary predictive processing models of human cognitive functioning in which the production and enjoyment of music follows directly from the principle of prediction error minimization.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204.CrossRefGoogle ScholarPubMed
Erle, T. M., Reber, R., & Topolinski, S. (2017). Affect from mere perception: Illusory contour perception feels good. Emotion (Washington, D.C.), 17(5), 856.CrossRefGoogle ScholarPubMed
Essick, G. K., McGlone, F., Dancer, C., Fabricant, D., Ragin, Y., Phillips, N., … Guest, S. (2010). Quantitative assessment of pleasant touch. Neuroscience & Biobehavioral Reviews, 34(2), 192203.CrossRefGoogle ScholarPubMed
Friston, K. J., & Friston, D. A. (2013). A free energy formulation of music generation and perception: Helmholtz revisited. In R. Bader (Ed.) Sound-Perception-Performance (pp. 4369). Springer.CrossRefGoogle Scholar
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? The Journal of Neuroscience, 39(47), 93979409. https://doi.org/10.1523/JNEUROSCI.0428-19.2019.CrossRefGoogle ScholarPubMed
Hsee, C. K., & Ruan, B. (2016). The Pandora effect: The power and peril of curiosity. Psychological Science, 27(5), 659666.CrossRefGoogle ScholarPubMed
Koelsch, S. (2020). A coordinate-based meta-analysis of music-evoked emotions. NeuroImage, 223, 117350. https://doi.org/10.1016/j.neuroimage.2020.117350.CrossRefGoogle ScholarPubMed
Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520541.CrossRefGoogle ScholarPubMed
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 6377.CrossRefGoogle ScholarPubMed
Kraus, N., Niedeggen, M., & Hesselmann, G. (2021). Trait anxiety is linked to increased usage of priors in a perceptual decision making task. Cognition, 206, 104474.CrossRefGoogle Scholar
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 8691.CrossRefGoogle ScholarPubMed
Sarasso, P., Neppi-Modona, M., Sacco, K., Ronga, I. (2020a). Stopping for knowledge: The sense of beauty in the perception-action cycle. Neuroscience & Biobehavioral Reviews, 118, 723738. https://doi.org/10.1016/j.neubiorev.2020.09.004.CrossRefGoogle Scholar
Tajfel, H. E. (1978). Differentiation between social groups: Studies in the social psychology of intergroup relations. Academic Press.Google Scholar
Van de Cruys, S. (2017). Affective value in the predictive mind. MIND Group.Google Scholar
Van de Cruys, S., & Wagemans, J. (2011). Putting reward in art: A tentative prediction error account of visual art. I-Perception, 2(9), 10351062.CrossRefGoogle ScholarPubMed
Werlen, E., Shin, S.-L., Gastambide, F., Francois, J., Tricklebank, M. D., Marston, H. M., … Walton, M. E. (2020). Amphetamine disrupts haemodynamic correlates of prediction errors in nucleus accumbens and orbitofrontal cortex. Neuropsychopharmacology, 45(5), 793803. https://doi.org/10.1038/s41386-019-0564-8.CrossRefGoogle ScholarPubMed