Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T00:09:39.274Z Has data issue: false hasContentIssue false

Progress without exclusion in the search for an evolutionary basis of music

Published online by Cambridge University Press:  30 September 2021

Daniel L. Bowling
Affiliation:
Stanford University School of Medicine, Stanford, CA94306, USA. dbowling@stanford.edu; https://profiles.stanford.edu/daniel-bowling
Marisa Hoeschele
Affiliation:
Acoustic Research Institute, Austrian Academy of Sciences, 1040Vienna, Austria. marisa.hoeschele@oeaw.ac.at; https://tinyurl.com/marisahoeschele Department of Cognitive Biology, University of Vienna, 1090Vienna, Austria.
Jacob C. Dunn
Affiliation:
Department of Cognitive Biology, University of Vienna, 1090Vienna, Austria. Behavioral Ecology Research Group, Anglia Ruskin University, CambridgeCB1 1PT, UK. jacob.dunn@aru.ac.uk; https://aru.ac.uk/people/jacob-c-dunn Biological Anthropology, University of Cambridge, CambridgeCB2 1QH, UK.

Abstract

Mehr et al.'s hypothesis that the origins of music lie in credible signaling emerges here as a strong contender to explain early adaptive functions of music. Its integration with evolutionary biology and its specificity mark important contributions. However, much of the paper is dedicated to the exclusion of popular alternative hypotheses, which we argue is unjustified and premature.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. W., Gangestad, S. W., & Mathew, D. (2002). Adaptationism – How to carry out an exaptationist program. Behavioral and Brain Sciences, 25(4), 489504. https://doi.org/10.1017/S0140525X02000092.CrossRefGoogle ScholarPubMed
Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112(36), 1115511160. https://doi.org/10.1073/pnas.1505768112.CrossRefGoogle ScholarPubMed
Brown, S., & Jordania, J. (2013). Universals in the world's musics. Psychology of Music, 41(2), 229248. https://doi.org/10.1177/0305735611425896.CrossRefGoogle Scholar
Brown, S., Merker, B., & Wallin, N. L. (Eds.). (2000). The origins of music. MIT Press.Google Scholar
Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray.Google Scholar
Dauer, R. M. (1983). Stress-timing and syllable-timing reanalyzed. Journal of Phonetics, 11(1), 5162.CrossRefGoogle Scholar
Delgado, R. A. (2006). Sexual selection in the loud calls of male primates: Signal content and function. International Journal of Primatology, 27(1), 525. https://doi.org/10.1007/s10764-005-9001-4.CrossRefGoogle Scholar
Dunn, J. C., Halenar, L. B., Davies, T. G., Cristobal-Azkarate, J., Reby, D., Sykes, D., … Knapp, L. A. (2015). Evolutionary trade-off between vocal tract and testes dimensions in howler monkeys. Current Biology, 25(21), 28392844. https://doi.org/10.1016/j.cub.2015.09.029.CrossRefGoogle ScholarPubMed
Filippi, P., Hoeschele, M., Spierings, M., & Bowling, D. L. (2019). Temporal modulation in speech, music, and animal vocal communication: Evidence of conserved function. Annals of the New York Academy of Sciences, 1453, 99113. https://doi.org/10.1111/nyas.14228.CrossRefGoogle ScholarPubMed
Gould, S. J. (1991). Exaptation: A crucial tool for an evolutionary psychology. Journal of Social Issues, 47(3), 4365. https://doi.org/10.1111/j.1540-4560.1991.tb01822.x.CrossRefGoogle Scholar
Gould, S. J., & Lewontin, R. C., (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society, 205 (1161), 581598. https://doi.org/10.1098/rspb.1979.0086.Google Scholar
Hoeschele, M. (2017). Animal pitch perception: Melodies and harmonies. Comparative Cognition & Behavior Reviews, 12, 518. https://doi.org/10.3819/CCBR.2017.120002.CrossRefGoogle ScholarPubMed
Hooper, P. L., & Miller, G. F. (2008). Mutual mate choice can drive costly signaling even under perfect monogamy. Adaptive Behavior, 16(1), 5370. https://doi.org/10.1177/1059712307087283.CrossRefGoogle Scholar
Jones, A. G., & Ratterman, N. L. (2009). Mate choice and sexual selection: What have we learned since Darwin? In the Light of Evolution, 3, 169190. https://doi.org/10.17226/12692.Google Scholar
Machin, A., & Dunbar, R. (2011). The brain opioid theory of social attachment: A review of the evidence. Behaviour, 148(9), 9851025. https://doi.org/10.1163/000579511X596624.CrossRefGoogle Scholar
Miller, G. (2000). Evolution of human music through sexual selection. In Brown, S., Merker, B. & Wallin, C. (Eds.), The origins of music (pp. 329360). The MIT Press.Google Scholar
North, A. C., & Hargreaves, D. J. (1999). Music and adolescent identity. Music Education Research, 1(1), 7592. https://doi.org/10.1080/1461380990010107.CrossRefGoogle Scholar
Puts, D. A., Hill, A. K., Bailey, D. H., Walker, R. S., Rendall, D., Wheatley, J. R., … Ramos-Fernandez, G. (2016). Sexual selection on male vocal fundamental frequency in humans and other anthropoids. Proceedings of the Royal Society B: Biological Sciences, 283(1829), 17. https://doi.org/10.1098/rspb.2015.2830.Google ScholarPubMed
Tarr, B., Launay, J., & Dunbar, R. (2014). Music and social bonding: “self-other” merging and neurohormonal mechanisms. Frontiers in Psychology, 5, 1096.CrossRefGoogle ScholarPubMed
Titze, I. R. (2000). Principles of voice production. National Center for Voice and Speech.Google Scholar
Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press.Google Scholar