To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the 2018 K$\unicode{x012B}$lauea lower East Rift Zone eruption, lava from 24 fissures inundated more than 8000 acres of land, destroying more than 700 structures over three months. Eruptive activity eventually focused at a single vent characterized by a continuously fed lava pond that was drained by a narrow spillway into a much wider, slower channelized flow. The spillway exhibited intervals of ‘pulsing’ behaviour in which the lava depth and velocity were observed to oscillate on time scales of several minutes. At the time, this was attributed to variations in vesiculation originating at depth. Here, we construct a toy fluid dynamical model of the pond–spillway system, and present an alternative hypothesis in which pulsing is generated at the surface, within this system. We posit that the appearance of pulsing is due to a supercritical Hopf bifurcation driven by an increase in the Reynolds number. Asymptotics for the limit cycle near the bifurcation point are derived with averaging methods and compare favourably with the cycle periodicity. Because oscillations in the pond were not observable directly due to the elevation of the cone rim and an obscuring volcanic plume, we model the observations using a spatially averaged Saint-Venant model of the spillway forced by the pond oscillator. The predicted spillway cycle periodicity and waveforms compare favourably with observations made during the eruption. The unusually well-documented nature of this eruption enables estimation of the viscosity of the erupting lava.
We present the benefits of advanced multimodality imaging and virtual reality modelling in the diagnosis and treatment planning of a child with aneurysms after numerous interventions for treatment of a hypoplastic aortic arch and coarctation.
Reflex anoxic syncope is the result of an overreaction of the vagal system, resulting in hypotension and bradycardia or brief cardiac arrest. Because of the benign character and the absence of complications in short or long term, treatment is only necessary in case of frequent or severe clinical presentation. Treatment options are anticholinergic drugs or cardiac pacemaker placement. We investigated atropine treatment and aimed to examine if pacemaker placement can be avoided.
Methods:
We retrospectively reviewed patients treated with atropine for severe reflex anoxic syncope in our centre from January 2017 until May 2023, and compared our results to those in the literature.
Results:
The study population consisted of 10 children, 70% female, with an age ranging from 5 months to 3 years (mean 14.5 months) when atropine treatment was started (dose 17–50 microg/kg/day). All patient’s parents reported adequate symptom management during atropine treatment, with complete resolution in 10%. Minor side effects were reported in 60% (dry mucosa in 40%, obstipation in 20%, and nausea or blurry vision in 10%).
Discussion:
We consider atropine a safe and effective treatment to manage reflex anoxic syncope with similar success rate to pacemaker implantation. However, pacemaker implantation entails substantial risk for complications (up to 25%) such as infection or technical problems and morbidity such as scar formation. This might be considered redundant for a benign and temporary condition, certainly given the possibility of other efficient treatment options. Consequently, we recommend atropine treatment over implantation of a cardiac pacemaker in children with severe reflex anoxic syncope.
The dynamics of stabilised concentrated emulsions presents a rich phenomenology including chaotic emulsification, non-Newtonian rheology and ageing dynamics at rest. Macroscopic rheology results from the complex droplet microdynamics and, in turn, droplet dynamics is influenced by macroscopic flows via the competing action of hydrodynamic and interfacial stresses, giving rise to a complex tangle of elastoplastic effects, diffusion, breakups and coalescence events. This tight multiscale coupling, together with the daunting challenge of experimentally investigating droplets under flow, has hindered the understanding of concentrated emulsions dynamics. We present results from three-dimensional numerical simulations of emulsions that resolve the shape and dynamics of individual droplets, along with the macroscopic flows. We investigate droplet dispersion statistics, measuring probability density functions (p.d.f.s) of droplet displacements and velocities, changing the concentration, in the stirred and ageing regimes. We provide the first measurements, in concentrated emulsions, of the relative droplet–droplet separations p.d.f. and of the droplet acceleration p.d.f., which becomes strongly non-Gaussian as the volume fraction is increased above the jamming point. Cooperative effects, arising when droplets are in contact, are argued to be responsible of the anomalous superdiffusive behaviour of the mean square displacement and of the pair separation at long times, in both the stirred and in the ageing regimes. This superdiffusive behaviour is reflected in a non-Gaussian pair separation p.d.f., whose analytical form is investigated, in the ageing regime, by means of theoretical arguments. This work paves the way to developing a connection between Lagrangian dynamics and rheology in concentrated emulsions.
When a contaminated liquid evaporates from within a porous material, the impurities or dirt accumulate and deposit within the pore space. This occurs during the cleaning of filters and fouling of textiles, and is related to the ‘coffee-ring’ problem. To investigate how and where dirt is deposited in the pore space, we present a model for the motion of an evaporation front through a porous material, and the related accumulation, transport, and deposition of dirt, assuming that the liquid remains stationary. For physically relevant parameters, vapour transport out of the porous material is quasi-steady and we derive a single ordinary differential equation describing the motion of the evaporation front in time. Model solutions exhibit spatially non-uniform profiles of the deposited dirt-layer thickness through the porous material. The dirt accumulation and evaporation problems are coupled: deposited dirt hinders vapour transport through the porous material, slowing the evaporation. We identify two scenarios in which the porous material becomes clogged with dirt. Accumulation of suspended dirt at the evaporating interface along with slow dirt diffusion results in the deposited dirt layers clogging the pores at the evaporating interface, halting the drying and trapping liquid in the porous material. Alternatively, slow dirt deposition results in the suspended dirt being pushed far into the porous material by the evaporation, eventually leaving only dirt (with no liquid) in the pore space. We investigate the dynamics of both clogging scenarios, characterising the parameter regimes for which each occurs. Both clogging scenarios must be avoided in practice since they may be detrimental to future filter efficacy or textile breathability.
During nematode surveys of natural vegetation in forests of La Cima de Copey de Dota, San José, San José province, Costa Rica, a Xenocriconemella species closely resembling X. macrodora and related species was found. Integrative taxonomical approaches demonstrated that it is a new species described herein as X. costaricense sp. nov. The new species is parthenogenetic (only females have been detected) and characterised by a short body (276–404 μm); lip region with two annuli, not offset, not separated from body contour; first lip annulus partially covering the second lip annulus. Stylet thin, very long (113–133 μm) and flexible, occupying 30.5–47.8% of body length. Excretory pore located from one or two annuli anterior to one or two annuli posterior to level of stylet knobs, at 42 (37–45) μm from anterior end. Female genital tract monodelphic, prodelphic, outstretched, and occupying 35–45% of body length, with vagina slightly ventrally curved (14–18 μm long). Anus located 6–11 annuli from the tail terminus. Tail conoid and bluntly rounded terminus, the last 2–3 annuli oriented dorsally. Results of molecular characterisation and phylogenetic analyses of D2-D3 expansion segments of 28S rRNA, ITS, and partial 18S rRNA, as well as cytochrome oxidase c subunit 1 gene sequences further characterised the new species and clearly separated it from X. macrodora and other related species (X. iberica, X. paraiberica, and X. pradense).
Not all scientific publications are equally useful to policy-makers tasked with mitigating the spread and impact of diseases, especially at the start of novel epidemics and pandemics. The urgent need for actionable, evidence-based information is paramount, but the nature of preprint and peer-reviewed articles published during these times is often at odds with such goals. For example, a lack of novel results and a focus on opinions rather than evidence were common in coronavirus disease (COVID-19) publications at the start of the pandemic in 2019. In this work, we seek to automatically judge the utility of these scientific articles, from a public health policy making persepctive, using only their titles.
Methods:
Deep learning natural language processing (NLP) models were trained on scientific COVID-19 publication titles from the CORD-19 dataset and evaluated against expert-curated COVID-19 evidence to measure their real-world feasibility at screening these scientific publications in an automated manner.
Results:
This work demonstrates that it is possible to judge the utility of COVID-19 scientific articles, from a public health policy-making perspective, based on their title alone, using deep natural language processing (NLP) models.
Conclusions:
NLP models can be successfully trained on scienticic articles and used by public health experts to triage and filter the hundreds of new daily publications on novel diseases such as COVID-19 at the start of pandemics.
The resurgence of industrial policymaking—particularly for emerging low-carbon industries—challenges social science theories that expect such interventions from centralized states or suggest that different kinds of states specialize in various forms of innovation policy. Interventionist forms of industrial policy have made a comeback among liberal economies. Coordinated economies now make use of market-driven strategies. This paper argues that the new generation of industrial strategies is shaped by the industrial development challenges that policymakers face at the sectoral level. It proposes a new theoretical framework that distinguishes between the policy orientation (targeted or open-ended) and the central agents driving financial and technological decision-making (governments or firms). We show that the choice of strategy is shaped by the level of uncertainty and the position of the domestic industry in global supply chains, that is, whether global supply chains are emerging or mature and whether the domestic industry is an entrant or incumbent.
The purpose of World Health Organization (WHO) Emergency Medical Teams (EMT) is to provide timely, high-quality health services in the immediate aftermath of disasters and during disease outbreaks and other emergencies, including conflict and insecurity.
The war in Ukraine has presented all health-care providers with many unique challenges. This assessment addresses the importance and the complexities of the global spread of the Emergency Medical Team system challenges to meet a wide variety of crises including war, those that are unique to this very complex crisis in Ukraine, and the essential role of educational initiatives, not only in professional development but also in teamwork and cultural integration.
This paper presents a comprehensive theoretical analysis of the interaction between two quasi-steady burning droplets with differing temperatures, sizes and distances, building upon the mass-flux-potential model and flame-sheet assumption. In contrast to existing research, this study introduces a fresh perspective on droplet interactions by considering the different temperatures of the droplets. Utilizing the bispherical coordinate approach, theoretical solutions for the Stefan flow, scalar fields, droplet evaporation/burning rates, interaction coefficients and flame positions have been derived successfully. A comparison with extensive numerical simulations indicates a good agreement between the analytical and numerical results under a variety of conditions. It is revealed that proximity between the droplets causes non-uniform evaporation rates on their surfaces, and in some cases, leads to condensation on the cooler droplet. Notably, when the temperatures of the two droplets differ, this results in an uneven temperature distribution across the flame surface, and increasing the temperature of one droplet substantially elevates the temperature of the nearby flame. This study also establishes a criterion for the transition between different combustion modes, specifically between group and separated combustion. The findings of this study are crucial in deepening our understanding of evaporation and combustion processes, as well as the dynamics of flame spreading, local ignition, and extinction in systems involving multiple droplets.