We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern ∼ 50 per cent of the sky (20,630 deg2); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of ∼1 rad m−2. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20″ and a typical RMS sensitivity in Stokes Q or U of 18 μJy beam−1. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38 per cent of the sky. POSSUM will enable the discovery and detailed investigation of magnetized phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
This paper reviews efforts to meet the climate goals of the Paris Agreement: to limit global warming to well below 2°C and ideally to 1.5°C above pre-industrial levels. The paper shows how the likelihood of breaching these thresholds presents the need for additional measures, in mitigation and intervention. Three climate actions are discussed: emissions reduction, greenhouse gas removal, and solar radiation modification. These actions differ in timescale and current state of knowledge. Progress must intensify if they are to aid in securing a safe and stable climate for future generations.
Technical summary
Current assessments of global greenhouse gas emissions suggest the Paris Agreement temperature thresholds of 1.5°C and 2°C warming above pre-industrial levels could be breached. The impacts on humans and ecosystems could be severe. Global trends suggest a prolonged reliance on fossil fuels. Additional measures to limit global warming are therefore needed. Here, we review three climate actions: emissions reduction, greenhouse gas removal (GGR), and solar radiation modification (SRM). Emissions reduction requires shifting energy production away from fossil fuels (the primary contribution of anthropogenic greenhouse gas emissions), reducing energy use in key sectors, and optimising land management. GGR efforts must scale sustainably in the near term. The scale-up of novel methods is constrained by economic and technological challenges and, in some cases, limited knowledge. SRM has received growing attention, given the immediate impacts of global warming and the protracted timescales of emissions reduction and GGR. Robust research and governance frameworks are needed to assess the risks posed by SRM, alongside the risks of forgoing SRM. These three actions could enable society to fulfil the Paris Agreement, limiting global warming and its impacts while atmospheric greenhouse gas concentrations are reduced to sustainable levels.
Social media summary
The progress of climate mitigation and intervention towards securing a sustainable future in a safe and stable climate.
Double-diffusive convection can arise when the fluid density is set by multiple species which diffuse at different rates. Different flow regimes are possible depending on the distribution of the diffusing species, including salt fingering and diffusive convection. Flows arising from diffusive convection commonly exhibit step-like density profiles with sharp density interfaces separated by well-mixed layers. The formation of density layers is also seen in stratified turbulence, where a framework based on sorted density coordinates (Winters & D’Asaro 1996 J. Fluid Mech.317, 179–193) has been used to diagnose layer formation (Zhou et al. 2017 J. Fluid Mech.823, 198–229; Taylor & Zhou 2017 J. Fluid Mech.823, R5). In this framework, the evolution of the sorted density profile can be expressed solely in terms of the eddy diffusivity, $\kappa _e$. Here, we use the same framework to diagnose layer formation in two-dimensional simulations of double-diffusive convection. We show that $\kappa _e$ is negative everywhere, with the antidiffusive effect strongest in ‘well-mixed’ layers where a positive diffusion coefficient may be expected. By considering a decomposition of the budget of the square of the Brunt-Väisälä frequency $\partial N^2_*/\partial t$, we demonstrate that the density layers are maintained by fundamentally different processes than in single-component stratified turbulence. In more complicated flows where stratified turbulence and double-diffusive convection can coexist, this framework could provide a method to distinguish between the mechanisms responsible for generating density layers.
We conducted a pilot study of implementing community health workers (CHWs) to assist patients with hypertension and social needs. As part of clinical care, patients identified as having an unmet need were referred to a CHW. We evaluated changes in blood pressure and needs among 35 patients and conducted interviews to understand participants’ experiences. Participants had a mean age of 54.1 years and 29 were Black. Twenty-six completed follow-up. Blood pressure and social needs improved from baseline to 6 months. Participants reported being accepting of CHWs, but also challenges with establishing a relationship with a CHW and being unclear about their role.
Inspired by laboratory experiments showing internal waves generated by a plume impinging upon a stratified fluid layer (Ansong & Sutherland. 2010 J. Fluid Mech.648, 405–434), we perform large eddy simulations in three dimensions to examine the structure and source of internal waves emanating from the top of a plume that rises vertically into stratification whose strength ranges over two orders of magnitude between different simulations. Provided the plume is sufficiently energetic to penetrate into the stratified layer, internal waves are generated with frequencies in a relatively narrow band moderately smaller than the buoyancy frequency. Through adaptations of ray theory including viscosity and use of dynamic mode decomposition, we show that the waves originate from within the turbulent flow rather than at the turbulent/non-turbulent interface between the fountain top and the surrounding stratified fluid.
North Carolina growers have long struggled to control Italian ryegrass, and recent research has confirmed that some Italian ryegrass biotypes have become resistant to nicosulfuron, glyphosate, clethodim, and paraquat. Integrating alternative management strategies is crucial to effectively control such biotypes. The objectives of this study were to evaluate Italian ryegrass control with cover crops and fall-applied residual herbicides and investigate cover crop injury from residual herbicides. This study was conducted during the fall/winter of 2021–22 in Salisbury, NC, and fall/winter of 2021–22 and 2022–23 in Clayton, NC. The study was designed as a 3 × 5 split-plot in which the main plot consisted of three cover crop treatments (no-cover, cereal rye at 80 kg ha−1, and crimson clover at 18 kg ha−1), and the subplots consisted of five residual herbicide treatments (S-metolachlor, flumioxazin, metribuzin, pyroxasulfone, and nontreated). In the 2021–22 season at Clayton, metribuzin injured cereal rye and crimson clover 65% and 55%, respectively. However, metribuzin injured both cover crops ≤6% in 2022–23. Flumioxazin resulted in unacceptable crimson clover injury of 50% and 38% in 2021–22 and 2022–23 in Clayton and 40% in Salisbury, respectively. Without preemergence herbicides, cereal rye controlled Italian ryegrass by 85% and 61% at 24 wk after planting in 2021–22 and 2022–23 in Clayton and 82% in Salisbury, respectively. In 2021–22, Italian ryegrass seed production was lowest in cereal rye plots at both locations, except when it was treated with metribuzin. For example, in Salisbury, cereal rye plus metribuzin resulted in 39,324 seeds m–2, compared to ≤4,386 seeds m–2 from all other cereal rye treatments. In 2022–23, Italian ryegrass seed production in cereal rye was lower when either metribuzin or pyroxasulfone were used preemergence (2,670 and 1,299 seeds m–2, respectively) compared with cereal rye that did not receive an herbicide treatment (5,600 seeds m–2). cereal rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.)
Two studies were conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to determine the optimal granular ammonium sulfate (AMS) rate and application timing for pyroxasulfone-coated AMS. In the rate study, AMS rates included 161, 214, 267, 321, 374, 428, and 481 kg ha−1, equivalent to 34, 45, 56, 67, 79, 90, and 101 kg N ha−1, respectively. All rates were coated with pyroxasulfone at 118 g ai ha−1 and topdressed onto 5- to 7-leaf cotton. In the timing study, pyroxasulfone (118 g ai ha−1) was coated on AMS and topdressed at 321 kg ha−1 (67 kg N ha−1) onto 5- to 7-leaf, 9- to 11-leaf, and first bloom cotton. In both studies, weed control and cotton tolerance to pyroxasulfone-coated AMS were compared to pyroxasulfone applied POST and POST-directed. The check in both studies received non-herbicide-treated AMS (321 kg ha−1). Before treatment applications, all plots (including the check) were maintained weed-free with glyphosate and glufosinate. In both studies, pyroxasulfone applied POST was most injurious (8% to 16%), while pyroxasulfone-coated AMS resulted in ≤4% injury. Additionally, no differences in cotton lint yield were observed in either study. With the exception of the lowest rate of AMS (161 kg ha−1; 79%), all AMS rates coated with pyroxasulfone controlled Palmer amaranth ≥83%, comparably to pyroxasulfone applied POST (92%) and POST-directed (89%). In the timing study, the application method did not affect Palmer amaranth control; however, applications made at the mid- and late timings outperformed early applications. These results indicate that pyroxasulfone-coated AMS can control Palmer amaranth comparably to pyroxasulfone applied POST and POST-directed, with minimal risk of cotton injury. However, the application timing could warrant additional treatment to achieve adequate late-season weed control.
In May 2017, whole-genome sequencing (WGS) became the primary subtyping method for Salmonella in Canada. As a result of the increased discriminatory power provided by WGS, 16 multi-jurisdictional outbreaks of Salmonella associated with frozen raw breaded chicken products were identified between 2017 and 2019. The majority (15/16) were associated with S. enteritidis, while the remaining outbreak was associated with S. Heidelberg. The 16 outbreaks included a total of 487 cases with ages ranging from 0 to 98 years (median: 24 years); 79 hospitalizations and two deaths were reported. Over the course of the outbreak investigations, 14 frozen raw breaded chicken products were recalled, and one was voluntarily withdrawn from the market. After previous changes to labelling and the issuance of public communication for these products proved ineffective at reducing illnesses, new industry requirements were issued in 2019, which required the implementation of measures at the manufacturing/processing level to reduce Salmonella to below detectable amounts in frozen raw breaded chicken products. Since implementation, no further outbreaks of Salmonella associated with frozen breaded chicken have been identified in Canada, a testament to the effectiveness of these risk mitigation measures.
With the increased use of computer-based tests in clinical and research settings, assessing retest reliability and reliable change of NIH Toolbox-Cognition Battery (NIHTB-CB) and Cogstate Brief Battery (Cogstate) is essential. Previous studies used mostly White samples, but Black/African Americans (B/AAs) must be included in this research to ensure reliability.
Method:
Participants were B/AA consensus-confirmed healthy controls (HCs) (n = 49) or mild cognitive impairment (MCI) (n = 34) adults 60–85 years that completed NIHTB-CB and Cogstate for laptop at two timepoints within 4 months. Intraclass correlations, the Bland-Altman method, t-tests, and the Pearson correlation coefficient were used. Cut scores indicating reliable change provided.
Results:
NIHTB-CB composite reliability ranged from .81 to .93 (95% CIs [.37–.96]). The Fluid Composite demonstrated a significant difference between timepoints and was less consistent than the Crystallized Composite. Subtests were less consistent for MCIs (ICCs = .01–.89, CIs [−1.00–.95]) than for HCs (ICCs = .69–.93, CIs [.46–.92]). A moderate correlation was found for MCIs between timepoints and performance on the Total Composite (r = -.40, p = .03), Fluid Composite (r = -.38, p = .03), and Pattern Comparison Processing Speed (r = -.47, p = .006).
On Cogstate, HCs had lower reliability (ICCs = .47–.76, CIs [.05–.86]) than MCIs (ICCs = .65–.89, CIs [.29–.95]). Identification reaction time significantly improved between testing timepoints across samples.
Conclusions:
The NIHTB-CB and Cogstate for laptop show promise for use in research with B/AAs and were reasonably stable up to 4 months. Still, differences were found between those with MCI and HCs. It is recommended that race and cognitive status be considered when using these measures.
An experiment was conducted in 2022 and 2023 near Rocky Mount and Clayton, NC, to evaluate residual herbicide-coated fertilizer for cotton tolerance and Palmer amaranth control. Treatments included acetochlor, atrazine, dimethenamid-P, diuron, flumioxazin, fluometuron, fluridone, fomesafen, linuron, metribuzin, pendimethalin, pyroxasulfone, pyroxasulfone + carfentrazone, S-metolachlor, and sulfentrazone. Each herbicide was individually coated on granular ammonium sulfate (AMS) and top-dressed at 321 kg ha−1 (67 kg N ha−1) onto 5- to 7-leaf cotton. The check plots received the equivalent rate of nonherbicide-treated AMS. Before top-dress, all plots (including the check) were treated with glyphosate and glufosinate to control previously emerged weeds. All herbicides except metribuzin resulted in transient cotton injury. Cotton response to metribuzin varied by year and location. In 2022, metribuzin caused 11% to 39% and 8% to 17% injury at the Clayton and Rocky Mount locations, respectively. In 2023, metribuzin caused 13% to 32% injury at Clayton and 73% to 84% injury at Rocky Mount. Pyroxasulfone (91%), pyroxasulfone + carfentrazone (89%), fomesafen (87%), fluridone (86%), flumioxazin (86%), and atrazine (85%) controlled Palmer amaranth ≥85%. Pendimethalin and fluometuron were the least effective treatments, resulting in 58% and 62% control, respectively. As anticipated, early season metribuzin injury translated into yield loss; plots treated with metribuzin yielded 640 kg ha−1 and were comparable to yields after linuron (790 kg ha−1) was used. These findings suggest that with the exception of metribuzin, residual herbicides coated onto AMS may be suitable and effective in cotton production, providing growers with additional modes of action for late-season control of multiple herbicide–resistant Palmer amaranth.
Herbicide drift to sensitive crops can result in significant injury, yield loss, and even crop destruction. When pesticide drift is reported to the Georgia Department of Agriculture (GDA), tissue samples are collected and analyzed for residues. Seven field studies were conducted in 2020 and 2021 in cooperation with the GDA to evaluate the effect of (1) time interval between simulated drift event and sampling, (2) low-dose herbicide rates, and (3) the sample collection methods on detecting herbicide residues in cotton (Gossypium hirsutum L.) foliage. Simulated drift rates of 2,4-D, dicamba, and imazapyr were applied to non-tolerant cotton in the 8- to 9-leaf stage with plant samples collected at 7 or 21 d after treatment (DAT). During collection, plant sampling consisted of removing entire plants or removing new growth occurring after the 7-leaf stage. Visual cotton injury from 2,4-D reached 43% to 75% at 0.001 and 0.004 kg ae ha−1, respectively; for dicamba, it was 9% to 41% at 0.003 or 0.014 kg ae ha−1, respectively; and for imazapyr, it was 1% to 74% with 0.004 and 0.03 kg ae ha−1 rates, respectively. Yield loss was observed with both rates of 2,4-D (11% to 51%) and with the high rate of imazapyr (52%); dicamba did not influence yield. Herbicide residues were detected in 88%, 88%, and 69% of samples collected from plants treated with 2,4-D, dicamba, and imazapyr, respectively, at 7 DAT compared with 25%, 16%, and 22% when samples were collected at 21 DAT, highlighting the importance of sampling quickly after a drift event. Although the interval between drift event and sampling, drift rate, and sampling method can all influence residue detection for 2,4-D, dicamba, and imazapyr, the factor with the greatest influence is the amount of time between drift and sample collection.
Benthic macroalgae (including brown macroalgae or kelp) constitute one of the largest contributors to coastal primary production, but their ability to store and sequester carbon remains uncertain. Here, we use a numerical model of the flow/kelp interactions to study how tidal currents interact with an idealised numerical model of a giant kelp (Macrocystis pyrifera) forest, intending to better understand the potential for kelp growth in nutrient-limited conditions and the export of important tracers such as dissolved organic carbon. We calibrate and test our model using observations of currents within and surrounding a kelp forest in Southern California. By varying the density of kelp in our model, we find that there is a kelp density that maximises the export of tracer released from the kelp forest. Since the tracer advection/diffusion equation is linear with respect to the tracer concentration, the same kelp density corresponds to the maximum uptake for a tracer with a constant far-field concentration. The density at which this maximum occurs coincides with the density typical of natural kelp forests, where kelp growth may be limited by the uptake of dissolved nutrients from the surrounding water. Additionally, the drag induced on the tidal currents by the kelp forest results in a mean circulation through the kelp forest and a mean displacement of the kelp forest canopy.
We use large-eddy simulations to study the penetration of a buoyant plume carrying a passive tracer into a stably stratified layer with constant buoyancy frequency. Using a buoyancy-tracer volume distribution, we develop a method for objectively partitioning plume fluid in buoyancy-tracer space into three regions, each of which corresponds to a coherent region in physical space. Specifically, we identify a source region where undiluted plume fluid enters the stratified layer, a transport region where much of the transition from undiluted to mixed fluid occurs in the plume cap and an accumulation region corresponding to a radially spreading intrusion. This method enables quantification of different measures of turbulence and mixing within each of the three regions, including potential energy and turbulent kinetic energy dissipation rates, an activity parameter and the instantaneous mixing efficiency. We find that the most intense buoyancy gradients lie in a thin layer at the cap of the penetrating plume. This provides the primary stage of mixing between plume and environment and exhibits a mixing efficiency around 50 %. Newly generated mixtures of environmental and plume fluid join the intrusion and experience relatively weak turbulence and buoyancy gradients. As the intrusion spreads radially, environmental fluid surrounding the intrusion is mixed into the intrusion with moderate mixing efficiency. This dominates the volume of environmental fluid entrained into the region containing plume fluid. However, the ‘strongest’ entrainment, as measured by the specific entrainment rate, is largest in the plume cap, where the most buoyant environmental fluid is entrained.
We investigate the dynamics of a columnar Taylor–Green vortex array under strong stratification, focusing on Froude numbers $0.125\leq Fr \leq 1.0$, with the aim of identifying and understanding the primary instabilities that lead to the vortices’ breakdown. Linear stability analysis reveals that the fastest-growing vertical wavenumber scales with $Fr^{-1}$, while the dimensionless growth rate remains approximately constant. The most unstable eigenmode, identified as the mixed hyperbolic mode by Hattori et al. (J. Fluid Mech., vol. 909, 2021, A4), bears significant similarities to the zigzag instability, first discovered by Billant & Chomaz (J. Fluid Mech., vol. 418, 2000, pp. 167–188). Direct numerical simulations further confirm that the zigzag instability is crucial in amplifying initial random perturbations to finite amplitude, with the flow structure and modal growth rate consistent with the linear stability analysis. In particular, the characteristic vertical length scale of turbulence matches that of the fastest-growing linear mode. These findings underscore the broader relevance of the zigzag instability mechanism beyond its initial discovery in vortex pairs, demonstrating its role in facilitating direct energy transfer from vertically uniform vortical motions to a characteristic vertical length scale proportional to $Fr$ in strongly stratified flows.
In December 2018, an outbreak of Salmonella Enteritidis infections was identified in Canada by whole-genome sequencing (WGS). An investigation was initiated to identify the source of the illnesses, which proved challenging and complex. Microbiological hypothesis generation methods included comparisons of Salmonella isolate sequence data to historical domestic outbreaks and international repositories. Epidemiological hypothesis generation methods included routine case interviews, open-ended centralized re-interviewing, thematic analysis of open-ended interview data, collection of purchase records, a grocery store site visit, analytic comparison to healthy control groups, and case–case analyses. Food safety hypothesis testing methods included food sample collection and analysis, and traceback investigations. Overall, 83 cases were identified across seven provinces, with onset dates from 6 November 2018 to 7 May 2019. Case ages ranged from 1 to 88 years; 60% (50/83) were female; 39% (22/56) were hospitalized; and three deaths were reported. Brand X profiteroles and eclairs imported from Thailand were identified as the source of the outbreak, and eggs from an unregistered facility were hypothesized as the likely cause of contamination. This study aims to describe the outbreak investigation and highlight the multiple hypothesis generation methods that were employed to identify the source.
An investigation into an outbreak of Salmonella Newport infections in Canada was initiated in July 2020. Cases were identified across several provinces through whole-genome sequencing (WGS). Exposure data were gathered through case interviews. Traceback investigations were conducted using receipts, invoices, import documentation, and menus. A total of 515 cases were identified in seven provinces, related by 0–6 whole-genome multi-locus sequence typing (wgMLST) allele differences. The median age of cases was 40 (range 1–100), 54% were female, 19% were hospitalized, and three deaths were reported. Forty-eight location-specific case sub-clusters were identified in restaurants, grocery stores, and congregate living facilities. Of the 414 cases with exposure information available, 71% (295) had reported eating onions the week prior to becoming ill, and 80% of those cases who reported eating onions, reported red onion specifically. The traceback investigation identified red onions from Grower A in California, USA, as the likely source of the outbreak, and the first of many food recall warnings was issued on 30 July 2020. Salmonella was not detected in any tested food or environmental samples. This paper summarizes the collaborative efforts undertaken to investigate and control the largest Salmonella outbreak in Canada in over 20 years.
Cognitive function may contribute to variability in older adults’ ability to cope with chronic stress; however, limited research has evaluated this relationship. This study investigated the relationship between theoretically derived coping domains and cognitive function in 165 middle-to-older adults during the Omicron stage of COVID-19.
Method:
Participants completed a clinical interview and self-report measures of health. The National Alzheimer’s Coordinating Center Uniform Data Set neuropsychological battery was used to evaluate memory, language, executive function/speed, and working memory. Structural equation modeling evaluated the underlying factor structure of the Brief COPE adapted for COVID-19.
Results:
The data supported the proposed second-order Approach factor comprised of Problem-Solving and Emotion Regulation (ER) strategies and a first-order Avoidance factor. Higher Avoidance was associated with greater depression symptoms, lower income and worse memory, executive function, working memory, and verbal fluency performance. Higher Problem-Solving was associated with better verbal fluency performance. ER strategies were not significantly associated with cognitive function. The use of Problem-Solving was not associated with less Avoidance. Greater use of Problem-Solving, ER, and Avoidance were all associated with higher levels of stress. Post-hoc analyses found that higher Acceptance was the only coping strategy associated with less stress.
Conclusions:
These findings demonstrate that older adults with worse cognitive function were more likely to use Avoidance during the pandemic, which could result in prolonged stress and adverse health consequences. Future research is warranted to investigate whether acceptance-based interventions reduce the avoidance and impact of stress on health in vulnerable older adults.