We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Geoarchaeological research as part of the AHRC funded Living with Monuments (LwM) project investigated the upper Kennet river system across the Avebury World Heritage landscape. The results demonstrate that in the early–mid-Holocene (c. 9500–1000 bc) there was very low erosion of disturbed soils into the floodplain, with floodplain deposits confined to a naturally forming bedload fluvial deposit aggrading in a shallow channel of inter-linked deeper pools. At the time of the Neolithic monument building in the 4th–early 3rd millennium bc, the river was wide and shallow with areas of presumed braid plain. Between c. 4000 and 1000 bc, a human induced signature of soil erosion became a minor component of fluvial sedimentation in the Kennet palaeo-channel but it was small scale and localised. This strongly suggests that there is little evidence of widespread woodland removal associated with Neolithic farming and monument building, despite the evidently large timber requirements for Neolithic sites like the West Kennet palisade enclosures. Consequently, there was relatively light human disturbance of the hinterland and valley slopes over the longue durée until the later Bronze Age/Early Iron Age, with a predominance of pasture over arable land. Rather than large Neolithic monument complexes being constructed within woodland clearings, representing ancestral and sacred spaces, the substantially much more open landscape provided a suitable landscape with areas of sarsen spreads potentially easily visible. During the period c. 3000–1000 bc, the sediment load within the channel slowly increased with alluvial deposition of increasingly humic silty clays across the valley floor. However, this only represents small-scale landscape disturbance. It is from the Late Bronze Age–Early Iron Age when the anthropogenic signal of human driven alluviation becomes dominant and overtakes the bedload fluvial signal across the floodplain, with localised colluvial deposits on the floodplain margins. Subsequently, the alluvial archive describes more extensive human impact across this landscape, including the disturbance of loessic-rich soils in the catchment. The deposition of floodplain wide alluvium continues throughout the Roman, medieval, and post-medieval periods, correlating with the development of a low-flow, single channel, with alluvial sediments describing a decreasing energy in the depositional environment.
Effective fundraising is essential to philanthropic responses to disaster. Many of the factors that encourage people to respond to appeals are already in place: needs are urgent and compelling; potential supporters know a lot about the issue from mass and social media and are moved by these reports. At first glance, fundraising for disasters may look simple, but it rarely is. Indeed, the metaphor of the perfect storm is aptly suited to fundraising in this context.
The chapter first explores the challenging conditions under which disaster appeals occur and how these distinguish disaster fundraising from ‘regular’ fundraising and resource development. The media is a critical factor in disaster fundraising as it shapes perceptions of need and responsibility, often with dramatic images that contribute to a sense of urgency – or alternatively a sense of complacency when there is limited coverage. The surprise of any particular disaster often means that fundraisers – whether charities and nonprofits or intermediaries – are not prepared for an immediate campaign. Drawing together insights about disaster fundraising from key sub-disciplines including disaster management and logistics, marketing, communication/ media studies, psychology, and fundraising/ philanthropy studies, the chapter provides a critical assessment of how fundraising organisations can be better prepared for philanthropic responses to disaster. Specifically, institutional readiness depends on: (1) a strong case or value proposition to inform potential supporters; (2) an identified constituency base of potential support; and (3) committed leadership with a feasible strategy. The conclusion offers brief implications for students, researchers, fundraising organisations and those who fund and monitor them.
Definitions and the conditions for a perfect storm
Need, urgency, scale, and potential for mistakes and misconduct: these factors differentiate fundraising from the normal rhythm of ‘resource development’ and sometimes converge to create a perfect storm of enabling conditions for missteps or outright failure. As a basis for shared understanding of fundraising in disaster contexts, some definitions are helpful.
Definitions: fundraising and development
Fundraising is commonly thought of as raising money for a particular cause or programme. Funds can be raised from a variety of sources – most typically individuals, but also businesses, governments and philanthropic foundations. Government or institutional philanthropic funding often flows in the form of grants through the fundraising practice of grantseeking. Fundraising organisations are key actors in disaster relief and direct appeals to a variety of communities (Okada et al, 2018).
Terracing is found widely in the Mediterranean and in other hilly and mountainous regions of the world. Yet while archaeological attention to these ‘mundane’ landscape features has grown, they remain understudied, particularly in Northern Europe. Here, the authors present a multidisciplinary study of terraces in the Breamish Valley, Northumberland. The results date their construction to the Early to Middle Bronze Age, when they were built by cutting back the hillside, stone clearance and wall construction. Environmental evidence points to their use for cereal cultivation. The authors suggest that the construction and use of these terraces formed part of an Early to Middle Bronze Age agricultural intensification, which may have been both demographically and culturally driven.
Humans have engineered their environments throughout the Holocene, especially in the construction of hydraulic infrastructure. In many regions, however, this infrastructure is difficult to date, including the vestiges of water-management systems in the Andean highlands. Focusing on silt reservoirs in the upper Ica drainage, Peru, the authors use cores and radiocarbon dates to demonstrate the pre-Hispanic construction of walls to enhance and expand wetlands for camelid pasture. Interventions dated to the Inca period (AD 1400–1532) indicate an intensification of investment in hydraulic infrastructure to expand production capacity in support of the state. The results are discussed in the context of the hydraulic strategies of other states and empires.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
Technical summary
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Social media summary
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
Animal experimental studies suggest that 5-HT4 receptor activation holds promise as a novel target for the treatment of depression and cognitive impairment. 5-HT4 receptors are post-synaptic receptors that are located in striatal and limbic areas known to be involved in cognition and mood. Consistent with this, 5-HT4 receptor agonists produce rapid antidepressant effects in a number of animal models of depression, and pro-cognitive effects in tasks of learning and memory. These effects are accompanied by molecular changes, such as the increased expression of neuroplasticity-related proteins that are typical of clinically useful antidepressant drugs. Intriguingly, these antidepressant-like effects have a fast onset of their action, raising the possibility that 5-HT4 receptor agonists may be a particularly useful augmentation strategy in the early stages of SSRI treatment. Until recently, the translation of these effects to humans has been challenging. Here, we review the evidence from animal studies that the 5-HT4 receptor is a promising target for the treatment of depression and cognitive disorders, and outline a potential pathway for the efficient and cost-effective translation of these effects into humans and, ultimately, to the clinic.
Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), also known as the brown marmorated stink bug, is an invasive agricultural and nuisance pest. Knowledge of the life history of insect pests is important for informing pest management activities. Some North American populations of H. halys have two generations per year, and it is suspected that H. halys may have a partial second generation in the Niagara Region of Ontario, Canada. We determined the number of H. halys generations in Ontario by examining the reproductive development of field-caught adult females. The pattern of reproductive development we observed supports the conclusion that H. halys complete one generation per year in the Niagara Region of Ontario. Reproductively active H. halys were captured as early as May and continued until early September, and the peak of reproductively active individuals occurred between 250 and 550 degree days calculated with a sine-wave function and a lower threshold set to 14.17 °C.
The DARA Big Data project is a flagship UK Newton Fund & GCRF program in partnership with the South African Department of Science & Technology (DST). DARA Big Data provides bursaries for students from the partner countries of the African VLBI Network (AVN), namely Botswana, Ghana, Kenya, Madagascar, Mauritius, Mozambique, Namibia and Zambia, to study for MSc(R) and PhD degrees at universities in South Africa and the UK. These degrees are in the three data intensive DARA Big Data focus areas of astrophysics, health data and sustainable agriculture. The project also provides training courses in machine learning, big data techniques and data intensive methodologies as part of the Big Data Africa initiative.
After the Portuguese discovered the Cape Verde Islands in AD 1456 they divided its main island, Santiago, into two governing captaincies. The founding settlement in the south-west, Cidade Velha, soon became the Islands’ capital and a thriving trade centre; in contrast, that in the east, Alcatrazes, only lasted as an official seat from 1484–1516 and is held to have ‘failed’ (see Richter 2015).
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
A new sequence of Holocene landscape change has been discovered through an investigation of sediment sequences, palaeosols, pollen and molluscan data discovered during the Stonehenge Riverside Project. The early post-glacial vegetational succession in the Avon valley at Durrington Walls was apparently slow and partial, with intermittent woodland modification and the opening-up of this landscape in the later Mesolithic and earlier Neolithic, though a strong element of pine lingered into the third millennium bc. There appears to have been a major hiatus around 2900 cal bc, coincident with the beginnings of demonstrable human activities at Durrington Walls, but slightly after activity started at Stonehenge. This was reflected in episodic increases in channel sedimentation and tree and shrub clearance, leading to a more open downland, with greater indications of anthropogenic activity, and an increasingly wet floodplain with sedges and alder along the river's edge. Nonetheless, a localized woodland cover remained in the vicinity of Durrington Walls throughout the third and second millennia bc, perhaps on the higher parts of the downs, while stable grassland, with rendzina soils, predominated on the downland slopes, and alder–hazel carr woodland and sedges continued to fringe the wet floodplain. This evidence is strongly indicative of a stable and managed landscape in Neolithic and Bronze Age times. It is not until c 800–500 cal bc that this landscape was completely cleared, except for the marshy-sedge fringe of the floodplain, and that colluvial sedimentation began in earnest associated with increased arable agriculture, a situation that continued through Roman and historic times.
The human malaria parasite, Plasmodium falciparum, is currently being actively studied by molecular biologists. It is hoped that the use of recombinant DNA techniques in this area will give new insights into the biology of the organism and, at the same time, provide new approaches to diagnosis and vaccine development.
Our own studies employ the blood stages of the parasite and cover three main areas: enzymes of importance in parasite metabolism; antigens of potential use in a subunit vaccine; and repetitive DNA as a probe able to distinguish genetically different isolates of P. falciparum and as a species-specific diagnostic tool in human and mosquito infections.
A model for F-prime formation is presented. It predicts that an Hfr strain giving rise to an F-prime factor would acquire a deletion corresponding to the chromosomal fragment carried by the episome. Genetic studies have confirmed this prediction. Concomitant transfer to the episome of a gene determining a function vital to the cell has permitted selection of derived Hfr strains in which the episomal fragment has been translocated to various sites on the bacterial chromosome.
A non-polymorphic antigen associated with the rhoptry organelles of Plasmodium falciparum has been purified by immuno-affinity chromatography. The antigen, RAP-1 (rhoptry associated protein-1). which is defined by monoclonal antibodies which inhibit parasite growth in vitro, is a multi-component antigen consisting of four major proteins of 80, 65, 42 and 40 kDa and two minor proteins of 77 and 70 kDa. These proteins were electro-eluted from preparative sodium dodecyl sulphate polyacrylamide gels and protected Saimiri sciureus monkeys from a lethal blood-stage infection of P. falciparum malaria. Sera from the protected animals recognized only proteins of the RAP-1 antigen when used to probe a Western blot of total parasite protein extract, confirming that RAP-1 is responsible for eliciting the protective immune response.
High-yielding dairy cows are at risk of injuries causing lameness due to the hard, abrasive nature or slipperiness of the usual concrete floor surface (Cook et al., 2004). These problems can be exacerbated by the milking procedure that includes crowding of cows and possible sharp turns at the entrance and exit of the parlour. Rubber mats on walkways have been shown to reduce injury (Rushen and Passillé, 2006) and are preferred by cows to a concrete or slatted surface (Telezhenko et al., 2007). A recent installation of rubber matting in the milking stalls of a 15 cows per side (30-30) rapid exit parlour provided an opportunity to observe potential effects on cow behaviour. The mats were introduced to one side at a time and then to both sides and the aim was to determine whether the rubber matting had any significant effects on social interaction immediately prior to entering the milking stalls and the time taken for 15 cows to take their places.