We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article the authors examine the effect of including alternate test forms in a factor matrix upon the validity of the resultant factor loadings, finding that in this particular instance the effect is negligible. Comparisons of the factor loadings derived from matrices in which only one of the alternate test forms is included with those in which both forms are included reveal practically no difference in the magnitude of either the original or rotated factor loadings, or in that of the computed communalities.
Experiments on the Richtmyer–Meshkov instability (RMI) in a dual driver vertical shock tube (DDVST) are described. An initially planar, stably stratified membraneless interface is formed by flowing air from above and sulfur hexafluoride from below the interface location using the method of Jones & Jacobs (Phys. Fluids, vol. 9, issue 1997, 1997, pp. 3078–3085). A random three-dimensional, multi-modal initial perturbation is imposed by vertically oscillating the gas column to produce Faraday waves. The DDVST design generates two shock waves, one originating above and one below the interface, with these shocks having independently controllable strengths and interface arrival times. The shock waves have nominal strengths of $M_L=1.17$ and $M_H=1.18$ for the shock wave originating in the light and heavy gas, respectively, with these strengths chosen to result in arrested bulk interface motion following reshock. The influence of the length of the shock-to-reshock time, as well as the order of shock arrival, on the post-reshock RMI is examined. The mixing layer width grows according to $h\propto t^\theta$, where $\theta _H=0.36\pm 0.018$ (95 %) and $\theta _L=0.38\pm 0.02$ (95 %) for heavy and light shock first experiments, respectively, indicating no strong dependence on the order of shock wave arrival. Volume integrated specific turbulent kinetic energy (TKE) in the mixing layer versus time is found to decay according to $E_{tot}/\bar {\rho }\propto t^p$ with $p_H=-0.823\pm 0.06$ (95 %) and $p_L=-1.061\pm 0.032$ (95 %) for heavy and light shock first experiments, respectively. Notably, the 95 % confidence intervals do not overlap. Analysis on the influence of the shock-to-reshock time on turbulent length scales, transition criteria, spectra and mixing layer anisotropy are also presented.
Background: SARS-CoV-2 viral load decreases over time after illness onset. However, immunocompromised patients may take longer for viral load decrease or have a more erratic viral-load trajectory. We used strand-specific assay data from admitted patients to evaluate viral-load trajectories after illness onset. Methods: We reviewed records of hospitalized patients with a positive SARS-CoV-2 PCR and tested using the strand-specific SARS-CoV-2 PCR during July 2020–April 2022. At Stanford Healthcare, we use a 2-step reverse real-time polymerase chain reaction (rRT-PCR) assay specific to the minus strand of the SARS-CoV-2 envelope gene to assess infectivity. Restricting our analysis to each patient’s first strand-specific assay, we used logistic regression models to compare patients with single versus multiple assays. Among patients with multiple tests, we compared those who had an upward trajectory in cycle threshold (Ct) values (a surrogate of decreasing viral load) versus those who did not. We analyzed presence of symptoms, immunocompromised state, immunosuppression reason, and severe COVID-19 leading to ICU care in univariate and multivariate models that further adjust for additional covariates. Significant differences were assessed using logistic regression odds ratios and an α level of 0.05. Results: In total, 848 inpatients were included. Among them, 703 were tested only once and 145 were tested 2–6 times. The longest duration of minus-strand detection was 163 days. In univariate analyses, patients with a single minus-strand assay had lower odds of being symptomatic (OR, 0.55), of being immunocompromised (OR, 0.58), and of being admitted to the ICU with severe COVID-19 (OR, 0.49). In the multivariate analysis, being admitted to the ICU with severe COVID-19 was the only significant variable associated with having >1 test (OR, 2.44). Among patients who had multiple strand-specific SARS-CoV-2 assays, 119 had upward minus-strand trends of Ct values (as expected) and 26 did not. Being immunocompromised was associated with nonrising minus-strand CT values (OR, 33.3) when holding all other covariates in the model constant. Conclusions: Immunocompromised patients with COVID-19 tend to actively replicate for longer and have unexpected viral trajectories compared to immunocompetent patients. Among immunocompromised patients, suspension of transmission-based precautions may require a case-by-case evaluation.
Experiments are presented on the Richtmyer–Meshkov instability (RMI) with a three-dimensional, multi-mode initial perturbation. The experiments use a vertical shock tube, where a stably stratified interface is formed between air and sulphur hexafluoride (SF$_6$) via counterflow. A perturbation is imposed at the interface by vertical oscillation of the gas column, forming Faraday waves. The interface is accelerated by a Mach 1.17 (in air) shock wave, and the development of the mixing region between the gases is investigated using particle image velocimetry. Following shock acceleration, a reflected shock wave from the bottom of the shock tube interacts with the mixing layer a second time (reshock). The experiment is initialized with both high and low amplitude perturbations to examine the effect of the perturbation amplitude on measured quantities. The instability growth exponent ($\theta$) is determined from the kinetic energy field using the width of the mixing layer and the decay of kinetic energy, which are found to be in agreement when the flow is most strongly excited. A growth exponent of $\theta \approx 0.5$ is found for all cases except the high-amplitude reshocked regime (where $\theta \approx 0.33$). High-amplitude experiments exhibit the transitional outer Reynolds number $(Re \equiv {h \dot {h}}/{\nu } > 10^4)$ required for mixing transition following the incident shock, and both experiments are elevated well above this threshold following reshock. However, neither set of experiments meet the more stringent requirements proposed by Zhou et al. (Phys. Rev.E, vol. 67, issue 5, 2003) which include the time dependent aspect of the RMI, an observation which is also made when examining the spectra.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
ABSTRACT IMPACT: Melanoma leptomeningeal disease (LMD) is a devastating subtype of central nervous system (CNS) metastatic disease that is associated with limited treatment options and an extremely poor prognosis, thus requiring the development of preclinical models of LMD for therapeutic development. OBJECTIVES/GOALS:
1. Develop an immunocompetent murine model of melanoma LMD with tumors bearing genetic mutations commonly found in patients, specifically BRAF(V600E)/PTEN-/-
2. Assess the safety of intrathecal (IT) immunotherapy, specifically anti-PD1 antibody (aPD1)
3. Evaluate the therapeutic efficacy of IT aPD1 checkpoint blockade in murine melanoma LMD METHODS/STUDY POPULATION: To develop BRAF(V600E)/PTEN-/- LMD models, we acquired BP, D4M, and D4M-UV2 (irradiated) murine melanoma cell lines and luciferase-tagged them. 1.5x10^4 cells were suspended in 10 uL serum-free media and injected into the cisterna magna of female C57BL/6 mice. Brain and spinal cord were harvested for histologic assessment once mice were moribund. To assess safety of IT aPD1, we injected IT control IgG or IT aPD1 (13 ug, 26 ug, 39 ug) and monitored weights or harvested at days 7 or 14 for IHC staining of inflammation markers. To evaluate therapeutic efficacy of IT aPD1, BP cells were directly injected as above. After 3 days, mice underwent imaging to confirm tumor uptake and randomization to receive 13 ug IT control IgG or aPD1 once + 200 ug systemic (Sys) control IgG or aPD1 (days 0, 3, and 5), and then monitored for survival. RESULTS/ANTICIPATED RESULTS: For LMD development, all mice survived cisternal injection of BP, D4M, and D4M-UV2 cells and median survival was 17, 19, and 30 days, respectively. Presence of leptomeningeal deposits was confirmed for all tumor-bearing mice by IHC for MART1. For safety of IT aPD1, all mice survived the procedure and no mice displayed morbidity or >10% weight loss over 14 days of observation. IHC assessment of brain and spinal cord samples from mice treated with 13 ug aPD1 revealed focal ischemia related to injection site and no other signs of neurological damage or inflammation. IT aPD1 treatment of mice with BP leptomeningeal tumors demonstrated no significant survival advantage, although both IT aPD1 +/- Sys aPD1 had mice live up to days 29 and 26, respectively, compared to both IT control IgG +/- Sys aPD1, for which all mice died by day 22. DISCUSSION/SIGNIFICANCE OF FINDINGS: We demonstrate that cisternal injection of murine BRAF(V600E)/PTEN-/- melanoma cell lines yield LMD with reproducible survival and that treatment with IT aPD1 in this model is feasible and safe. Together these findings establish a new model to facilitate the development of more effective immunotherapy strategies for melanoma patients with LMD.
The lack of radiation knowledge among the general public continues to be a challenge for building communities prepared for radiological emergencies. This study applied a multi-criteria decision analysis (MCDA) to the results of an expert survey to identify priority risk reduction messages and challenges to increasing community radiological emergency preparedness.
Methods:
Professionals with expertise in radiological emergency preparedness, state/local health and emergency management officials, and journalists/journalism academics were surveyed following a purposive sampling methodology. An MCDA was used to weight criteria of importance in a radiological emergency, and the weighted criteria were applied to topics such as sheltering-in-place, decontamination, and use of potassium iodide. Results were reviewed by respondent group and in aggregate.
Results:
Sheltering-in-place and evacuation plans were identified as the most important risk reduction measures to communicate to the public. Possible communication challenges during a radiological emergency included access to accurate information; low levels of public trust; public knowledge about radiation; and communications infrastructure failures.
Conclusions:
Future assessments for community readiness for a radiological emergency should include questions about sheltering-in-place and evacuation plans to inform risk communication.
Sub-acute ruminal acidosis (SARA) can reduce the production efficiency and impair the welfare of cattle, potentially in all production systems. The aim of this study was to characterise measurable postmortem observations from divergently managed intensive beef finishing farms with high rates of concentrate feeding. At the time of slaughter, we obtained samples from 19 to 20 animals on each of 6 beef finishing units (119 animals in total) with diverse feeding practices, which had been subjectively classified as being high risk (three farms) or low risk (three farms) for SARA on the basis of the proportions of barley, silage and straw in the ration. We measured the concentrations of histamine, lipopolysaccharide (LPS), lactate and other short-chain fatty acids (SCFAs) in ruminal fluid, LPS and SCFA in caecal fluid. We also took samples of the ventral blind sac of the rumen for histopathology, immunohistopathology and gene expression. Subjective assessments were made of the presence of lesions on the ruminal wall, the colour of the lining of the ruminal wall and the shape of the ruminal papillae. Almost all variables differed significantly and substantially among farms. Very few pathological changes were detected in any of the rumens examined. The animals on the high-risk diets had lower concentrations of SCFA and higher concentrations of lactate and LPS in the ruminal fluid. Higher LPS concentrations were found in the caecum than the rumen but were not related to the risk status of the farm. The diameters of the stratum granulosum, stratum corneum and of the vasculature of the papillae, and the expression of the gene TLR4 in the ruminal epithelium were all increased on the high-risk farms. The expression of IFN-γ and IL-1β and the counts of cluster of differentiation 3 positive and major histocompatibility complex class two positive cells were lower on the high-risk farms. High among-farm variation and the unbalanced design inherent in this type of study in the field prevented confident assignment of variation in the dependent variables to individual dietary components; however, the CP percentage of the total mixed ration DM was the factor that was most consistently associated with the variables of interest. Despite the strong effect of farm on the measured variables, there was wide inter-animal variation.
Using data collected from a Community Assessment for Public Health Emergency Response (CASPER) conducted in Fairfax Health District, Virginia, in 2016, we sought to assess the relationship between household-level perceived preparedness and self-reported preparedness behaviors.
Methods:
Weighted population estimates and 95% confidence intervals were reported, and Pearson’s chi-squared test was used to investigate differences by group.
Results:
Examining responses to how prepared respondents felt their household was to handle a large-scale emergency or disaster, an estimated 7.4% of respondents (95% CI: 4.3–12.3) reported that their household was “completely prepared,” 37.3% (95% CI: 31.4–43.7) were “moderately prepared,” 38.2% (95% CI: 31.6–45.2) were “somewhat prepared,” and 14.4% (95% CI: 10.2–20.0) were “unprepared.” A greater proportion of respondents who said that their household was “completely” or “moderately” prepared for an emergency reported engaging in several behaviors related to preparedness. However, for several preparedness behaviors, there were gaps between perceived preparedness and self-reported readiness.
Conclusions:
Community assessments for public health preparedness can provide valuable data about groups who may be at risk during an emergency due to a lack of planning and practice, despite feeling prepared to handle a large-scale emergency or disaster.
Compound heterozygotes occur when different variants at the same locus on both maternal and paternal chromosomes produce a recessive trait. Here we present the tool VarCount for the quantification of variants at the individual level. We used VarCount to characterize compound heterozygous coding variants in patients with epileptic encephalopathy and in the 1000 Genomes Project participants. The Epi4k data contains variants identified by whole exome sequencing in patients with either Lennox-Gastaut Syndrome (LGS) or infantile spasms (IS), as well as their parents. We queried the Epi4k dataset (264 trios) and the phased 1000 Genomes Project data (2504 participants) for recessive variants. To assess enrichment, transcript counts were compared between the Epi4k and 1000 Genomes Project participants using minor allele frequency (MAF) cutoffs of 0.5 and 1.0%, and including all ancestries or only probands of European ancestry. In the Epi4k participants, we found enrichment for rare, compound heterozygous variants in six genes, including three involved in neuronal growth and development – PRTG (p = 0.00086, 1% MAF, combined ancestries), TNC (p = 0.022, 1% MAF, combined ancestries) and MACF1 (p = 0.0245, 0.5% MAF, EU ancestry). Due to the total number of transcripts considered in these analyses, the enrichment detected was not significant after correction for multiple testing and higher powered or prospective studies are necessary to validate the candidacy of these genes. However, PRTG, TNC and MACF1 are potential novel recessive epilepsy genes and our results highlight that compound heterozygous variants should be considered in sporadic epilepsy.
OBJECTIVES/SPECIFIC AIMS: Little is known about potentially obesogenic endocrine-disruptors’ effects on excessive gestational weight gain (GWG) and postpartum weight retention (PPWR), which increase risk of adverse pregnancy and postnatal outcomes. We explored associations between prenatal organophosphate (OP) pesticide exposure and increased weight both during and after pregnancy. METHODS/STUDY POPULATION: Three dimethyl (DM) and three diethyl (DE) OP metabolites were measured in spot urine samples collected at <18, 18-25, and >25 gestational weeks among 688 participants in the Generation R Study. Metabolite levels were expressed as molar concentration/gram creatinine and log10-transformed. GWG and PPWR were calculated as the difference between weight at each prenatal/postnatal visit or maximum gestational weight and pre-pregnancy weight. In covariate-adjusted regression models we assessed associations of metabolite concentrations at each prenatal visit and, where appropriate, averaged across pregnancy with early-to-mid pregnancy, mid-to-late pregnancy, late pregnancy-to-maximum, and total GWG; insufficient and excessive GWG according to Institute of Medicine guidelines; and long-term PPWR at 6 and 10 years postpartum. Based on OP pesticides’ lipophilicity and association with hypomethylation, we investigated interactions with pre-pregnancy body mass index, periconceptional folic acid supplementation, and breastfeeding duration. RESULTS/ANTICIPATED RESULTS: A 10-fold increase in late pregnancy DE metabolite concentration was associated with 1.34 kg [95% confidence interval: 0.55, 2.12] higher late pregnancy-to-maximum GWG. A 10-fold increase in mean DE metabolite concentration across pregnancy was associated with 2.41 kg [0.62, 4.20] lower PPWR at 6 years. Stratified analysis suggested that the prenatal finding was driven by women with pre-pregnancy BMI ≥25 kg/m2, while the postnatal finding was driven by women with pre-pregnancy BMI <25 kg/m2 and with inadequate folic acid supplementation. We found no associations between OP pesticide metabolites and insufficient or excessive weight gain and no interaction with breastfeeding. DISCUSSION/SIGNIFICANCE OF IMPACT: In this longitudinal analysis, we observed a positive association of OP pesticide metabolites with GWG in late pregnancy among overweight/obese women, potentially reflecting inhibition of OP pesticide detoxification by oxidative stress. Postnatally, under/normal weight women with higher OP pesticide metabolites had lower PPWR, possibly due to better metabolic function and a more healthful diet. These results suggest that there may be a critical period during the late phase of pregnancy when OP pesticide exposure may increase GWG, and this association may be amplified in overweight/obese women. Areas for future research include examination of how the interaction between OP pesticides and polymorphisms of the paraoxonase (PON1) gene, which detoxifies OP pesticides, affect GWG/PPWR; exploration of the interplay among maternal pre-pregnancy BMI, oxidative stress, and PON1 levels; and characterization of the variability of OP pesticides exposure across pregnancy using more frequent repeated urine samples.
Chloris spp. are warm-season grasses that outcompete crops for scarce resources throughout Australia. In Queensland, mild winters and increased adoption of conservation tillage practices have led to an increase of this warm-season grass family in winter crops. The objective of this study is to understand whether droplet size (nozzle type) effects herbicide efficacy of summer perennial grasses, as previous research found no effect of droplet size (nozzle type) on herbicide efficacy of winter annual grasses. A study to compare droplet-size (nozzle type) effects on control of windmillgrass and its domesticated relative, rhodesgrass, was conducted at the University of Queensland in Gatton, QLD, Australia. Results showed little difference in dry weight reductions for windmillgrass or rhodesgrass across droplet size (nozzle type). Paraquat applications with the TTI nozzle resulted in significantly lower dry weight reductions compared with other droplet-size sprays (nozzle types) for rhodesgrass. Glyphosate, imazamox plus imazapyr, and clodinafop resulted in commercially acceptable control for both species, regardless of the droplet size (nozzle type) selected, indicating droplet size (nozzle type) has relatively little impact on the efficacy of these herbicides. Proper nozzle selection can result in control of Chloris spp., a hard to control weed species, while reducing the occurrence of spray drift to nearby sensitive areas.
Previous analyses of the history of Phanerozoic marine biodiversity suggested that the post-Paleozoic increase observed at the family level and below was caused, in part, by an increase in global provinciality associated with the breakup of Pangea. Efforts to characterize the Phanerozoic history of provinciality, however, have been compromised by interval-to-interval variations in the methods and standards used by researchers to calibrate the number of provinces. With the development of comprehensive, occurrence-based data repositories such as the Paleobiology Database (PaleoDB), it is now possible to analyze directly the degree of global compositional disparity as a function of geographic distance (geo-disparity) and changes thereof throughout the history of marine animal life. Here, we present a protocol for assessing the Phanerozoic history of geo-disparity, and we apply it to stratigraphic bins arrayed throughout the Phanerozoic for which data were accessed from the PaleoDB. Our analyses provide no indication of a secular Phanerozoic increase in geo-disparity. Furthermore, fundamental characteristics of geo-disparity may have changed from era to era in concert with changes to marine venues, although these patterns will require further scrutiny in future investigations.
Direct stimulation of 23 median, 13 ulnar and 2 peroneal nerves at the time of surgical exploration has been used to locate, and characterize the conduction abnormalities in thenerves. The most frequent location of the major conduction abnormalities in the median nerve was in the first 1-2 cm distal to the origin of the carpal tunnel. In the ulnar nerve the important conduction abnormalities were located most frequently in the segments 1 cm proximal and distal to the medial epicondyle. In the peroneal nerve the major conduction abnormalities occurred proximal or distal to the entry point of the common peroneal nerve into the peroneus longusmuscle.
An experiment was conducted to examine whether increased CLA in milk of dairy cows fed fresh pasture compared with alfalfa and corn silages was because of ruminal or endogenous synthesis. Eight Holsteins were fed a total mixed ration using alfalfa and corn silages as the forage source in confinement or grazed in a replicated crossover design. The proportion of total fatty acids as CLA (primarily c9, t11-18:2) in g/100 g was 0.44 v. 0.28 in ruminal digesta, 0.89 v. 0.53 in omasal digesta and 0.71 v. 1.06 in milk during confinement feeding and grazing, respectively. Blood plasma CLA was 0.54 v. 1.05 mg/l for the two treatments, respectively. The increased concentration of CLA in milk with grazing likely resulted from increased synthesis through desaturation of t11-18:1 in the mammary gland.