We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In gas evolving electrolysis, bubbles grow at electrodes due to a diffusive influx from oversaturation generated locally in the electrolyte by the electrode reaction. When considering electrodes of micrometre size resembling catalytic islands, direct numerical simulations show that bubbles may approach dynamic equilibrium states at which they neither grow nor shrink. These are found in undersaturated and saturated bulk electrolytes during both pinning and expanding wetting regimes of the bubbles. The equilibrium is based on the balance of local influx near the bubble foot and global outflux. To identify the parameter regions of bubble growth, dissolution and dynamic equilibrium by analytical means, we extend the solution of Zhang & Lohse (2023 J. Fluid Mech. vol. 975, R3) by taking into account modified gas fluxes across the bubble interface, which result from a non-uniform distribution of dissolved gas. The Damköhler numbers at equilibrium are found to range from small to intermediate values. Unlike pinned nanobubbles studied earlier, for micrometre-sized bubbles the Laplace pressure plays only a minor role. With respect to the stability of the dynamic equilibrium states, we extend the methodology of Lohse & Zhang (2015a Phys. Rev. E vol. 91, 031003(R)) by additionally taking into account the electrode reaction. Under contact line pinning, the equilibrium states are found to be stable for flat nanobubbles and for microbubbles in general. For unpinned bubbles, the equilibrium states are always stable. Finally, we draw conclusions on how to possibly enhance the efficiency of electrolysis.
Anhedonia, a transdiagnostic feature common to both Major Depressive Disorder (MDD) and Schizophrenia (SCZ), is characterized by abnormalities in hedonic experience. Previous studies have used machine learning (ML) algorithms without focusing on disorder-specific characteristics to independently classify SCZ and MDD. This study aimed to classify MDD and SCZ using ML models that integrate components of hedonic processing.
Methods
We recruited 99 patients with MDD, 100 patients with SCZ, and 113 healthy controls (HC) from four sites. The patient groups were allocated to distinct training and testing datasets. All participants completed a modified Monetary Incentive Delay (MID) task, which yielded features categorized into five hedonic components, two reward consequences, and three reward magnitudes. We employed a stacking ensemble model with SHapley Additive exPlanations (SHAP) values to identify key features distinguishing MDD, SCZ, and HC across binary and multi-class classifications.
Results
The stacking model demonstrated high classification accuracy, with Area Under the Curve (AUC) values of 96.08% (MDD versus HC) and 91.77% (SCZ versus HC) in the main dataset. However, the MDD versus SCZ classification had an AUC of 57.75%. The motivation reward component, loss reward consequence, and high reward magnitude were the most influential features within respective categories for distinguishing both MDD and SCZ from HC (p < 0.001). A refined model using only the top eight features maintained robust performance, achieving AUCs of 96.06% (MDD versus HC) and 95.18% (SCZ versus HC).
Conclusion
The stacking model effectively classified SCZ and MDD from HC, contributing to understanding transdiagnostic mechanisms of anhedonia.
Emission line galaxies (ELGs) are crucial for cosmological studies, particularly in understanding the large-scale structure of the Universe and the role of dark energy. ELGs form an essential component of the target catalogue for the Dark Energy Spectroscopic Instrument (DESI), a major astronomical survey. However, the accurate selection of ELGs for such surveys is challenging due to the inherent uncertainties in determining their redshifts with photometric data. In order to improve the accuracy of photometric redshift estimation for ELGs, we propose a novel approach CNN–MLP that combines convolutional neural networks (CNNs) with multilayer perceptrons (MLPs). This approach integrates both images and photometric data derived from the DESI Legacy Imaging Surveys Data Release 10. By leveraging the complementary strengths of CNNs (for image data processing) and MLPs (for photometric feature integration), the CNN–MLP model achieves a $\sigma_{\mathrm{NMAD}}$ (normalised median absolute deviation) of 0.0140 and an outlier fraction of 2.57%. Compared to other models, CNN–MLP demonstrates a significant improvement in the accuracy of ELG photometric redshift estimation, which directly benefits the target selection process for DESI. In addition, we explore the photometric redshifts of different galaxy types (Starforming, Starburst, AGN, and Broadline). Furthermore, this approach will contribute to more reliable photometric redshift estimation in ongoing and future large-scale sky surveys (e.g. LSST, CSST, and Euclid), enhancing the overall efficiency of cosmological research and galaxy surveys.
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the synovial membrane, leading to cartilage destruction and bone erosion. Due to the complex pathogenesis of RA and the limitations of current therapies, increasing research attention has been directed towards novel strategies targeting fibroblast-like synoviocytes (FLS), which are key cellular components of the hyperplastic pannus. Recent studies have highlighted the pivotal role of FLS in the initiation and progression of RA, driven by their tumour-like transformation and the secretion of pro-inflammatory mediators, including cytokines, chemokines and matrix metalloproteinases. The aggressive phenotype of RA-FLS is marked by excessive proliferation, resistance to apoptosis, and enhanced migratory and invasive capacities. Consequently, FLS-targeted therapies represent a promising avenue for the development of next-generation RA treatments. The efficacy of such strategies – particularly those aimed at modulating FLS signalling pathways – has been demonstrated in both preclinical and clinical settings, underscoring their therapeutic potential. This review provides an updated overview of the pathogenic mechanisms and functional roles of FLS in RA, with a focus on critical signalling pathways under investigation, including Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), Notch and interleukin-1 receptor-associated kinase 4 (IRAK4). In addition, we discuss the emerging understanding of FLS-subset-specific contributions to immunometabolism and explore how computational biology is shaping novel targeted therapeutic strategies. A deeper understanding of the molecular and functional heterogeneity of FLS may pave the way for more effective and precise therapeutic interventions in RA.
In gas evolving electrolysis, bubbles grow at electrodes due to a diffusive influx from oversaturation generated locally in the electrolyte by the electrode reaction. When considering electrodes of micrometre size resembling catalytic islands, direct numerical simulations show that bubbles may approach dynamic equilibrium states at which they neither grow nor shrink. These are found in under- and saturated bulk electrolytes during both pinning and expanding wetting regimes of the bubbles. The equilibrium is based on the balance of local influx near the bubble foot and global outflux. To identify the parameter regions of bubble growth, dissolution and dynamic equilibrium by analytical means, we extend the solution of Zhang & Lohse (2023) J. Fluid Mech.975, R3, by taking into account modified gas fluxes across the bubble interface, that result from a non-uniform distribution of dissolved gas. The Damköhler numbers at equilibrium are found to range from small to intermediate values. Unlike pinned nano-bubbles studied earlier, for micrometre-sized bubbles the Laplace pressure plays only a minor role. With respect to the stability of the dynamic equilibrium states, we extend the methodology of Lohse & Zhang (2015a) Phys. Rev. E91 (3), 031003(R), by additionally taking into account the electrode reaction. Under contact line pinning, the equilibrium states are found to be stable for flat nano-bubbles and for micro-bubbles in general. For unpinned bubbles, the equilibrium states are always stable. Finally, we draw conclusions on how to possibly enhance the efficiency of electrolysis.
Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae), is a major pest in corn production, and its management remains a significant challenge. Current control methods, which rely heavily on synthetic chemical pesticides, are environmentally detrimental and unsustainable, necessitating the development of eco-friendly alternatives. This study investigates the potential of the entomopathogenic nematode Steinernema carpocapsae as a biological control agent for O. furnacalis pupae, focusing on its infection efficacy and the factors influencing its performance. We conducted a series of laboratory experiments to evaluate the effects of distance, pupal developmental stage, soil depth, and light conditions on nematode attraction, pupal mortality and sublethal impacts on pupal longevity and oviposition. Results demonstrated that S. carpocapsae exhibited the highest attraction to pupae at a 3 cm distance, with infection declining significantly at greater distances. Younger pupae (<12 h old), were more attractive to nematodes than older pupae, and female pupae were preferred over males. Nematode infection was highest on the head and thorax of pupae, with a significant reduction in infection observed after 24 h. Infection caused 100% mortality in pupae within 2 cm soil depth, though efficacy was reduced under light conditions. Sublethal effects included a significant reduction in the longevity of infected adults and a decrease in the number of eggs laid by infected females compared to controls. These findings underscore the potential of S. carpocapsae as an effective biocontrol agent for sustainable pest management in corn production, offering a viable alternative to chemical pesticides.
We present a practical verification method for safety analysis of the autonomous driving system (ADS). The main idea is to build a surrogate model that quantitatively depicts the behavior of an ADS in the specified traffic scenario. The safety properties proved in the resulting surrogate model apply to the original ADS with a probabilistic guarantee. Given the complexity of a traffic scenario in autonomous driving, our approach further partitions the parameter space of a traffic scenario for the ADS into safe sub-spaces with varying levels of guarantees and unsafe sub-spaces with confirmed counter-examples. Innovatively, the partitioning is based on a branching algorithm that features explainable AI methods. We demonstrate the utility of the proposed approach by evaluating safety properties on the state-of-the-art ADS Interfuser, with a variety of simulated traffic scenarios, and we show that our approach and existing ADS testing work complement each other. We certify five safe scenarios from the verification results and find out three sneaky behavior discrepancies in Interfuser which can hardly be detected by safety testing approaches.
To evaluate the variations in COVID-19 case fatality rates (CFRs) across different regions and waves, and the impact of public health interventions, social and economic characteristics, and demographic factors on COVID-19 CFRs, we collected data from 30 countries with the highest incidence rate in three waves. We summarized the CFRs of different countries and continents in each wave through meta-analysis. Spearman’s correlation and multiple linear regression were employed to estimate the correlation between influencing factors and reduction rates of CFRs. Significant differences in CFRs were observed among different regions during the three waves (P < 0.001). An association was found between the changes in fully vaccinated rates (rs = 0.41), population density (rs = 0.43), the proportion of individuals over 65 years old (rs = 0.43), and the reduction rates of case fatality rate. Compared to Wave 1, the reduction rates in Wave 2 were associated with population density (β = 0.19, 95%CI: 0.05–0.33) and smoking rates (β = −4.66, 95%CI: −8.98 – −0.33), while in Wave 3 it was associated with booster vaccine rates (β = 0.60, 95%CI: 0.11–1.09) and hospital beds per thousand people (β = 4.15, 95%CI: 1.41–6.89). These findings suggest that the COVID-19 CFRs varied across different countries and waves, and promoting booster vaccinations, increasing hospital bed capacity, and implementing tobacco control measures can help reduce CFRs.
We report a numerical investigation of a previously noticed but less explored flow state transition in two-dimensional turbulent Rayleigh–Bénard convection. The simulations are performed in a square domain over a Rayleigh number range of $10^7 \leq Ra \leq 2 \times 10^{11}$ and a Prandtl number range of $0.25 \leq Pr \leq 20$. The transition is characterized by the emergence of multiple satellite eddies with increasing $Ra$, which orbit around and interact with the main vortex roll in the system. Consequently, the main roll is squeezed to a smaller size compared with the domain and wanders around in the bulk region irregularly and extensively. This is in sharp contrast to the flow state before the transition, which is featured by a domain-sized circulatory roll with its vortex centre ‘condensed’ near the domain's centre. Detailed velocity field analysis reveals that there exists an abrupt increase in the energy fluctuations of the Fourier modes during the transition. Based on this phase-transition-like signal, the critical condition for the transition is found to follow a scaling relation as $Ra_t \sim Pr^{1.41}$ where $Ra_t$ is the critical Rayleigh number for the transition. This scaling relation is quantitatively explained by a phenomenological model grounded on the bistability behaviour (i.e. spontaneous and stochastic switching between the two flow states) observed at the edge of the transition. The model can also account for the effects of aspect ratio on the transition reported in the literature (van der Poel et al., Phys. Fluids, vol. 24, 2012).
Whether material deprivation-related childhood socio-economic disadvantages (CSD) and care-related adverse childhood experiences (ACE) have different impacts on depressive symptoms in middle-aged and older people is unclear.
Methods
In the Guangzhou Biobank Cohort Study, CSD and ACE were assessed by 7 and 5 culturally sensitive questions, respectively, on 8,716 participants aged 50+. Depressive symptoms were measured by 15-item Geriatric Depression Scale (GDS). Multivariable linear regression, stratification analyses, and mediation analyses were done.
Results
Higher CSD and ACE scores were associated with higher GDS score in dose-response manner (P for trend <0.001). Participants with one point increment in CSD and ACE had higher GDS score by 0.11 (95% confidence interval [CI], 0.09–0.14) and 0.41 (95% CI, 0.35–0.47), respectively. The association of CSD with GDS score was significant in women only (P for sex interaction <0.001; women: β (95% CI)=0.14 (0.11–0.17), men: 0.04 (−0.01 to 0.08)). The association between ACE and GDS score was stronger in participants with high social deprivation index (SDI) (P for interaction = 0.01; low SDI: β (95% CI)=0.36 (0.29–0.43), high SDI: 0.64 (0.48–0.80)). The proportion of association of CSD and ACE scores with GDS score mediated via education was 20.11% and 2.28%.
Conclusions
CSD and ACE were associated with late-life depressive symptoms with dose-response patterns, especially in women and those with low adulthood socio-economic status. Education was a major mediator for CSD but not ACE. Eliminating ACE should be a top priority.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
Flexible electronics researchers have been conducting studies to explore the response of flexible stretchable electrodes to strain. The regulation of strain response in current flexible stretchable electrodes relies primarily on altering the material system, interfacial adhesion, or electrode structure. However, modifying the material system or interfacial adhesion can negatively disrupt the stretchable electrode preparation process, making commercialization a significant challenge. Additionally, the material system may be inadequate in extreme environments such as high temperatures. Hence a systematic structural design approach is crucial for effective response modulation of stretchable electrodes. One potential solution is the design of fibre structures from the micro to macro scale. This article focuses on discussing how the response of stretchable electrodes can be modulated by fibres in different states. The discussion includes fibres on elastic films, fibres directly constituting fibrous membranes at the microscopic level, and fibres constituting metamaterials at the fine level. The modulation can be achieved by altering the orientation of the fibres, the geometrical structure of the fibres themselves, and the geometrical structure formed between the fibres. Additionally, the article analyses the current situation of stretchable electrodes in extreme environments such as high temperatures. It also reviews the development of ceramic fibre membranes that can be stretched in high-temperature environments. The authors further discuss how the stretchability of ceramic fibre membranes can be improved through the structuring of ceramic fibre membranes with metamaterials. Ultimately, the goal is to realize stretchable electrodes that can be used in extreme environments such as high temperatures.
To evaluate one-stage thyroid cartilage laryngotracheal reconstruction in children less than one year of age with congenital subglottic stenosis.
Methods
Congenital subglottic stenosis children less than one year old who underwent one-stage thyroid cartilage laryngotracheal reconstruction between 2016 and 2020 in our department were retrospectively reviewed. Their clinical characteristics, treatments and prognoses were assessed.
Results
Eleven congenital subglottic stenosis children (6–11 months) were included: seven with Myer–Cotton grade II, and four with Myer–Cotton grade III. Their tracheal diameters were corrected to normal size using thyroid cartilage, and they were intubated under sedation for two weeks after surgery. Moreover, all of them received anti-infection and anti-reflux therapies during hospitalisation. No breathing difficulty, aspiration, hoarseness or laryngitis was observed during the follow-up period (10–30 months), and their growth and development were age appropriate.
Conclusion
The one-stage thyroid cartilage laryngotracheal reconstruction is a good treatment option for congenital subglottic stenosis children less than one year old with Myer–Cotton grade II–III.
An enhanced wideband tracking method for characteristic modes (CMs) is investigated in this paper. The method consists of three stages, and its core tracking stage (CTS) is based on a classical eigenvector correlation-based algorithm. To decrease the tracking time and eliminate the crossing avoidance (CRA), we append a commonly used eigenvalue filter (EF) as the preprocessing stage and a novel postprocessing stage to the CTS. The proposed postprocessing stage can identify all CRA mode pairs by analyzing their trajectory and correlation characteristics. Subsequently, it can predict corresponding CRA frequencies and correct problematic qualities rapidly. Considering potential variations in eigenvector numbers at consecutive frequency samples caused by the EF, a new execution condition for the adaptive frequency adjustment in the CTS is introduced. Finally, CMs of a conductor plate and a fractal structure are investigated to demonstrate the performance of the proposed method, and the obtained results are discussed.
Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.
Expertise in social perception, defined as the ability to decode another person's mental states based on basic behavioral signals (Allison et al., 2000; Beauchamp et al., 2008). The Reading the Mind in the Eyes Test (RMET) is a social-perception task of theory of mind (ToM, Meinhardt-Injac et al., 2020) and used to test different clinical disorders, like autism spectrum disorders (ASD, Peñuelas-Calvo et al., 2019). RMET has been used to demonstrate gender, cultural, genetic, and personality trait influences on ToM and elucidate its neurobiological mechanisms (Adams et al., 2010). In Taiwan, there has few sensitive tools to evaluate children's social perception, thus the purpose of this study is to examine psychometric properties of child's version of RMET in Taiwan (RMET-C-TW) and cross-cultural comparisons.
Participants and Methods:
RMET-C (Baron-Cohen et al., 2001) was used to assess mental state/emotion recognition (Vellante et al., 2013). It consists of photographs of the eye regions of 28 faces. Participants were asked to make a choice between four words presented, choose the one that best described for feel or think. One point was given to each correctly response. RMET-C-TW was double-translation of words to ensure cultural applicability in Taiwan. This study included both a normative sample and criteria sample. The normative sample consisted of 769 (385 male, 384 female) 3 to 9 grades students from northern Taiwan. The normative sample completed both the RMET-C-TW and Chinese Vocabulary Test (CVT) in groups at their own schools, the CVT was to ensure that participants had sufficient vocabulary skills to understand the options provided in REMT-C-TW. The criteria sample were collected from 46 matched, school-aged children with ASD (age mean = 10.52, SD = 1.62; IQ = 108.39, SD = 11.75), and normally developing controls (age mean = 10.66, SD=1.68; IQ = 109.70, SD = 12.12). These two groups were administered the (1) WISC-III (2) CVT (3) RMET-C-TW and (4) ToM Test.
Results:
The results showed that RMET-C-TW had acceptable test-retest reliability and internal consistency (test-retest reliability = .71, Cronbach α= .40). There were significant gender and age difference in the performance of RMET-C-TW, example female, older participants performed better. Item analysis showed 93% of items in the RMET-C-TW had cross- cultural consistency in the distribution of respondents' choices. In criteria sample, the control group's RMET-C-TW scores significantly better than ASD group. Physician diagnosis (r = .49, p < .01) and high-order ToM's scores (r = .33, p < .01) were significantly associated with RMET-C-TW scores.
Conclusions:
RMET-C-TW has acceptable reliability and good developmental validity (age-related growth) in three to nine grades, and future can be extended to different age and clinicians to understand the development of social perception. Therefore, RMET-C-TW can be used as an initial screening and cross-cultural tool for ASD. In addition, EF is divided into cold and hot, and hot EF makes a unique contribution to ToM in ASD (Kouklari et al., 2017), thus this tool may also be used in the future to understand the association of hot EF with social perception.
The preschool children born very low birth weight(VLBW) still have executive functions(EFs) deficits even with normal early development(Ni, Huang, & Guo, 2011). Consequently, early intervention might be more important than expected. This study aims to investigate the follow-up outcome of the therapeutic effects of integrative neuropsychological training model(INTM) focused on EFs for school-age VLBW children with EFs deficits.
Participants and Methods:
The VLBW children, recruited from the Regional Cohort Network for premature infants who were admitted to neonatal intensive care units, had normal scores in Bayley and Wechsler Intelligence systems before 6 years old. They also received follow-up neuropsychological assessment for EFs at 6 or 8-year-old. The deficits of EFs were defined from the result of Digit Span Subtest of WISC-IV, Knox's Cube Test(KCT), Tower of London(ToL), Wisconsin Card Sorting Test(WCST), and Comprehensive Nonverbal Attention Test Battery(CNAT). A total of 8 VLBW children with EFs deficits were recruited and received EFs training at 6 or 8-year-old. The INTM combined with Comprehensive Memory Training System(CMTS), Executive FUNction Training(EFT), and multi-ecological materials focused on enhancing the four aspects of EFs, including working memory, planning, cognitive flexibility, and inhibition ability. Then, they received follow-up neuropsychological assessment for EFs at 8 or 10-year-old.
Results:
The results showed that all children got benefits from 20 hours of INTM and most of the EF aspects remained improved at follow-up. A total of 8 VLBW children with an average of 3.4 aspects EFs deficits had an average of 1.4 aspects of EFs deficits left at the follow-up. More precisely, 5 of them had 1 aspects of EFs deficits and 3 of them had 2 aspects of EFs deficits.
Conclusions:
This study revealed that such a short-term INTM had long-term effects in enhancing the EFs of those VLBW children who had normal early development but later grew into EFs deficits at school-age. Besides, their EFs are still improving even after two years of intervention. Further study on more subjects with longer follow-up might help VLBW children to achieve better neuropsychological function.
Previous studies had shown that even with normal early development, preterm children at age six still have executive function deficits, including planning, cognitive flexibility, and nonverbal working memory. The present study aims to discuss further the correlation between IQ and EF of preterm children with different birthweight in order to clarify the potential influence of birthweight.
Participants and Methods:
The preterm children were recruited from the Regional Cohort Network for premature infants who were admitted to neonatal intensive care units. Inclusion criteria were their scores of Bayley Scales of Infant and Toddler Development, second or third edition at 12 and 24 months, and Wechsler Preschool and Primary Scale of Intelligence, Revised Edition at 5 years old were higher than 70. Meanwhile, their FSIQ of Wechsler Intelligence Scale for Children, Fourth Edition were higher than 85 at age 6. Exclusion criteria were visual impairment, hearing impairment, and cerebral palsy. There was a total of 251 preterm children recruited in the present study. Preterm children were then divided into very low birthweight (VLBW) and extremely low birth weight (ELBW) groups. The VLBW group included 183 preterm children, whose birthweight is between 1000-1500g, and gestational age is less than 37 weeks. The ELBW group included 68 preterm children, whose birthweight is less than 1000g and gestational age is less than 37 weeks. Four types of executive function were assessed. Inhibition was assessed through Comprehensive Nonverbal Attention Test Battery (CNAT), cognitive flexibility was assessed through Wisconsin Card Sorting Test (WCST), verbal working memory was assessed through the Longest Digit Span Forward (LDSB) index of Digit Span Subtest of Wechsler Intelligence Scale for Children-IV (WISC-IV), and nonverbal working memory was assessed through Knox's Cube Test (KCT), and planning ability was assessed through Tower of London (ToL). Data were analyzed with independent T-test and Pearson Correlation.
Results:
In VLBW preterm group, results showed that there were significant correlations (p<.05) between FSIQ and EF indexes in five out of six indexes of WCST, LDSB of Digit Span of WISC-IV, Backward score of Knox's Cube Test, and three out of six indexes of ToL. As to the CNAT, there was no index of CNAT that was significantly correlated with FSIQ in the VLBW preterm group. In ELBW preterm group, results showed that there were significant correlations (p<.05) between FSIQ and EF indexes in one out of five indexes of CNAT, one out of six indexes of WCST, Backward score of Knox's Cube Test, and two out of six indexes of ToL. And the LDSB of Digit Span of WISC-IV was not significantly correlated with FSIQ in ELBW preterm group.
Conclusions:
There were fewer EF indexes significantly correlated with FSIQ in ELBW preterm children with normal early development than VLBW preterm children with normal early development, suggesting that even with an IQ higher than 85, lower the birthweight, especially lower than 1000g, higher the EF performance should be concerned. Therefore, in the clinical setting, it is very important to assess the EF independently. And birthweight may be a crucial factor in preterm children's prefrontal cortex maturity.
Lower limb exoskeletons (LLEs) have demonstrated their potential in delivering quantified repetitive gait training for individuals afflicted with gait impairments. A critical concern in robotic gait training pertains to fostering active patient engagement, and a viable solution entails harnessing the patient’s intrinsic effort to govern the control of LLEs. To address these challenges, this study presents an innovative online gait learning approach with an appropriate control strategy for rehabilitation exoskeletons based on dynamic movement primitives (DMP) and an Assist-As-Needed (AAN) control strategy, denoted as DMP-AAN. Specifically tailored for post-stroke patients, this approach aims to acquire the gait trajectory from the unaffected leg and subsequently generate the reference gait trajectory for the affected leg, leveraging the acquired model and the patient’s personal exertion. Compared to conventional AAN methodologies, the proposed DMP-AAN approach exhibits adaptability to diverse scenarios encompassing varying gait patterns. Experimental validation has been performed using the lower limb rehabilitation exoskeleton HemiGo. The findings highlight the ability to generate suitable control efforts for LLEs with reduced human-robot interactive force, thereby enabling highly patient-controlled gait training sessions to be achieved.
All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.