We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Residual herbicides are primarily degraded in the soil through microbial breakdown. Any practices that result in increased soil biological activity, such as cover cropping (between cash crop seasons), could lead to a reduced persistence of herbicides in the soil. Furthermore, cover crops can also interfere with herbicide fate by interception. Field trials were conducted between 2020 and 2023 in a corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation to investigate the influence of cover crop (cereal rye [Secale cereale L.] and crimson clover [Trifolium incarnatum L.]) use on soil enzyme activities (β-glucosidase [BG] and dehydrogenase [DHA]), its effect on the concentration of residual herbicides (sulfentrazone, S-metolachlor, cloransulam-methyl, atrazine, and mesotrione) in the soil, and the interception of herbicides by cover crop residue. The use of cover crops occasionally resulted in increased BG and DHA activities relative to the fallow treatment. However, even when there was an increase in the activity of these two enzymes, increased degradation of the residual herbicides was not observed. The initial concentrations of all residual herbicides in the soil were significantly reduced due to interception by cereal rye biomass. Nevertheless, significant reductions in early-season weed biomass were observed when residual herbicides were included in the tank mixture applied at cover crop termination relative to the application of glyphosate plus glufosinate. Results from this research suggest that the use of cereal rye or crimson clover as cover crops (between cash crop seasons) do not impact the persistence of residual herbicides in the soil or reduce their efficacy in controlling weeds early in the growing season.
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances. However, tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance. We describe several near-infrared, visible, ultraviolet and soft and hard X-ray diagnostics employed in a ∼1022 W/cm2 laser–plasma experiment. We used nearly 10 J total energy femtosecond laser pulses focused into an approximately 1.3-μm focal spot on 5–20 μm thick stainless-steel targets. We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5 μm accuracy (i.e., around half of the short Rayleigh length) and show that several diagnostics (in particular, 3$\omega$ reflection and on-axis hard X-rays) can ensure this accuracy. We demonstrated target positioning within several micrometers from the focus, ensuring over 80% of the ideal peak laser intensity on-target. Our approach is relatively fast (it requires 10–20 laser shots) and does not rely on the coincidence of low-power and high-power focal planes.
As the scale of cosmological surveys increases, so does the complexity in the analyses. This complexity can often make it difficult to derive the underlying principles, necessitating statistically rigorous testing to ensure the results of an analysis are consistent and reasonable. This is particularly important in multi-probe cosmological analyses like those used in the Dark Energy Survey (DES) and the upcoming Legacy Survey of Space and Time, where accurate uncertainties are vital. In this paper, we present a statistically rigorous method to test the consistency of contours produced in these analyses and apply this method to the Pippin cosmological pipeline used for type Ia supernova cosmology with the DES. We make use of the Neyman construction, a frequentist methodology that leverages extensive simulations to calculate confidence intervals, to perform this consistency check. A true Neyman construction is too computationally expensive for supernova cosmology, so we develop a method for approximating a Neyman construction with far fewer simulations. We find that for a simulated dataset, the 68% contour reported by the Pippin pipeline and the 68% confidence region produced by our approximate Neyman construction differ by less than a percent near the input cosmology; however, they show more significant differences far from the input cosmology, with a maximal difference of 0.05 in $\Omega_{M}$ and 0.07 in w. This divergence is most impactful for analyses of cosmological tensions, but its impact is mitigated when combining supernovae with other cross-cutting cosmological probes, such as the cosmic microwave background.
Cover crops can be utilized to suppress weeds via direct competition for sunlight, water, and soil nutrients. Research was conducted to determine if cover crops can be used in label-mandated buffer areas in 2,4-D-resistant soybean cropping systems. Delaying termination of cover crops containing cereal rye to at or after soybean planting resulted in a 25 to more than 200 percentage point increase in cover crop biomass compared to a control treatment. Cover crops generally improved horseweed control when 2,4-D was not used. Cover crops reduced grass densities up to 54% at four of six site-years when termination was delayed to after soybean planting. Cover crops did not reduce giant ragweed densities. Cover crops reduced waterhemp densities by up to 45%. Cover crops terminated at or after planting were beneficial within buffer areas for control of grasses and waterhemp, but not giant ragweed. Yield reductions of 14% to 41% occurred when cover crop termination was delayed to after soybean planting at three of six site-years. Terminating the cover crops at planting time provided suppression of grasses and waterhemp within buffer areas and had similar yield to the highest-yielding treatment in five out of six site-years.
As herbicide-resistant weeds become more problematic, producers will consider the use of cover crops to suppress weeds. Weed suppression from cover crops may occur especially in the label-mandated buffer areas of dicamba-resistant soybean where dicamba use is not allowed. Three cover crops terminated at three timings with three herbicide strategies were evaluated for their effect on weed suppression in dicamba-resistant soybean. Delaying termination until soybean planting or after and using cereal rye or cereal rye + crimson clover increased cover-crop biomass by at least 40% compared to terminating early or using a crimson clover–only cover crop. Densities of problematic weed species were evaluated in early summer before a blanket POST application. Plots with cereal rye had 75% less horseweed compared to crimson clover at two of four site-years. Cereal rye or the mixed cover crop terminated at or after soybean planting reduced waterhemp densities by 87% compared to early termination timings of crimson clover and the earliest termination timing of the mix at one of two site-years. Cover crops were not as effective in reducing waterhemp densities as they were in reducing horseweed densities. This difference was due to a divergence in emergence patterns; waterhemp emergence generally peaks after termination of the cover crop, whereas horseweed emergence coincides with establishment and rapid vegetative growth of cereal rye. Cover crops alone were generally not as effective as was using a high-biomass cover crop combined with an herbicide strategy that contained dicamba and residual herbicides. However, within label-mandated buffer areas where dicamba cannot be used, a cover crop containing cereal rye with delayed termination until soybean planting combined with residual herbicides could be used to improve suppression of horseweed and waterhemp.
Field experiments were conducted in 2017 and 2018 at two locations in Indiana to evaluate the influence of cover crop species, termination timing, and herbicide treatment on winter and summer annual weed suppression and corn yield. Cereal rye and canola cover crops were terminated early or late (2 wk before or after corn planting) with a glyphosate- or glufosinate-based herbicide program. Canola and cereal rye reduced total weed biomass collected at termination by up to 74% and 91%, in comparison to fallow, respectively. Canola reduced horseweed density by up to 56% at termination and 57% at POST application compared to fallow. Cereal rye reduced horseweed density by up to 59% at termination and 87% at POST application compared to fallow. Canola did not reduce giant ragweed density at termination in comparison to fallow. Cereal rye reduced giant ragweed density by up to 66% at termination and 62% at POST application. Termination timing had little to no effect on weed biomass and density reduction in comparison to the effect of cover crop species. Cereal rye reduced corn grain yield at both locations in comparison to fallow, especially for the late-termination timing. Corn grain yield reduction up to 49% (4,770 kg ha–1) was recorded for cereal rye terminated late in comparison to fallow terminated late. Canola did not reduce corn grain yield in comparison to fallow within termination timing; however, late-terminated canola reduced corn grain yield by up to 21% (2,980 kg ha–1) in comparison to early-terminated fallow. Cereal rye can suppress giant ragweed emergence, whereas canola is not as effective at suppressing large-seeded broadleaves such as giant ragweed. These results also indicate that early-terminated cover crops can often result in higher corn grain yields than late-terminated cover crops in an integrated weed management program.
After a population of laser-driven hot electrons traverses a limited thickness solid target, these electrons will encounter the rear surface, creating TV/m fields that heavily influence the subsequent hot-electron propagation. Electrons that fail to overcome the electrostatic potential reflux back into the target. Those electrons that do overcome the field will escape the target. Here, using the particle-in-cell (PIC) code EPOCH and particle tracking of a large population of macro-particles, we investigate the refluxing and escaping electron populations, as well as the magnitude, spatial and temporal evolution of the rear surface electrostatic fields. The temperature of both the escaping and refluxing electrons is reduced by 30%–50% when compared to the initial hot-electron temperature as a function of intensity between $10^{19}$ and $10^{21}~~\text{W}/\text{cm}^{2}$. Using particle tracking we conclude that the highest energy internal hot electrons are guaranteed to escape up to a threshold energy, below which only a small fraction are able to escape the target. We also examine the temporal characteristic of energy changes of the refluxing and escaping electrons and show that the majority of the energy change is as a result of the temporally evolving electric field that forms on the rear surface.
A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component (${<}$1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component (${>}$3 THz) of BTR.
Despite aspirations to be a world-class national curriculum, the Australian Curriculum (AC) has been criticised as ‘manifestly deficient’ (Australian Government Department of Education and Training, 2014 p. 5) as an inclusive curriculum, failing to meet the needs of all students with disabilities (SWD) and their teachers. There is a need for research into the daily attempts of educators to navigate the tension between a ‘top-down’ system-wide curriculum and a ‘bottom-up’ regard for individual student needs, with a view to informing both policy and practice. This article is the first of two research papers in which we report the findings from a national online Research in Special Education (RISE) Australian Curriculum Survey of special educators in special schools, classes, and units regarding their experience using the AC to plan for and teach SWD. Survey results indicated (a) inconsistent use of the AC as the primary basis for developing learning objectives and designing learning experiences, (b) infrequent use of the achievement standards to support assessment and reporting, and (c) considerable supplementation of the AC from other resources when educating SWD. Overall, participants expressed a lack of confidence in translating the AC framework into a meaningful curriculum for SWD. Implications for policy, practice, and future research are discussed.
Giant electromagnetic pulses (EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers (e.g. the Extreme Light Infrastructure). We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP, providing an opportunity for comparison with existing charge separation models.
Introduction: Prehospital blood transfusion has been adopted by many civilian helicopter emergency medical service (HEMS) agencies and early outcomes are positive. Shock Trauma Air Rescue Service (STARS) operates six bases in Western Canada and in 2013 implemented a prehospital transfusion program. We describe the processes and standard work ensuring safe storage, administration, and stewardship of this precious resource. Our aim was to produce a sustainable and safe blood storage system that could be carried on each mission flown. Methods: Close collaboration with transfusion services and adherence to Canadian Transfusion Standards was key at each step of development. An inexpensive, reusable, temperature controlled thermal packaging device was obtained along with an electronic temperature logger. Conditioning of the device and temperature maintenance (1 6C) was tested to ensure safe storage conditions. Online training programs were developed for air medical crew (AMC) as well as transport physicians (TPs) regarding administration indications, safety, and stewardship processes. Blood traceability and usage was monitored on an ongoing basis for quality assurance. Results: Two units of O negative packed red blood cells (pRBCs) are now carried on each flight. The blood box is conditioned and prepared by transfusion services for routine exchange every 72 hours. If pRBCs are administered the blood bank is immediately notified for preparation of another cooler. Unused blood is returned to blood bank circulation. Conclusion: The introduction of the STARS blood on board program supports the provision of emergent transfusion to selected patients in the pre-hospital environment. Our standard work and stewardship processes minimize wastage of blood products while keeping it readily available for critically ill and injured patients. Subsequent work will aim to describe characteristics and patient centred outcomes.
A 21-year-old woman receiving prolonged high dosage glucocorticoids developed spinal cord compression due to excessive accumulation of epidural fat. Computerized tomographic scanning confirmed the diagnosis and revealed a peculiar pattern of spinal cord displacement which we believe to be unique to compression by fat. Laminectomy did not afford relief, possibly because of prolonged neural compression or because of compression at a higher spinal level. Although an unusual complication of Cushing’s syndrome, epidural lipomatosis should be considered when such a patient develops symptoms of spinal cord or cauda equina compression.
In traditional transit timing variations (TTVs) analysis of multi-planetary systems, the individual TTVs are first derived from transit fitting and later modelled using n-body dynamic simulations to constrain planetary masses. We show that fitting simultaneously the transit light curves with the system dynamics (photo-dynamical model) increases the precision of the TTV measurements and helps constrain the system architecture. We exemplify the advantages of applying this photo-dynamical model to a multi-planetary system found in K2 data very close to 3:2 mean motion resonance, K2-19. In this case the period of the larger TTV variations (libration period) is much longer (>1.5 years) than the duration of the K2 observations (80 days). However, our method allows to detect the short period TTVs produced by the orbital conjunctions between the planets that in turn permits to uniquely characterise the system. Therefore, our method can be used to constrain the masses of near-resonant systems even when the full libration curve is not observed.
The upper part of cores of the Onakawana B Drillhole in the Moose River Basin in northern Ontario includes the upper part of the upper member of the Williams Island Formation (22.5 m, 16 samples), and the entire overlying Long Rapids Formation (75.1 m, 49 samples). The sequence of conodonts from the drillhole was analyzed by graphic correlation as well as conventional zonation.
The upper carbonate member of the Williams Island Formation correlates with lower Frasnian zones 2 to 5. Below this, mixed Frasnian and Famennian conodont faunas occur partly in a brecciated interval within the member and represent stratigraphic leak below the Frasnian. The lower member of the Long Rapids Formation correlates in its lowest part with Zone 5, followed by a hiatus of zones 6 to 8. This is succeeded by zones 9 and 10. Zone 11 is missing, followed by an interval that correlates with upper Frasnian zones 12 and 13 to within the lower Famennian Middle triangularis Zone. The Frasnian-Famennian boundary occurs within a narrow interval in the lower member. The Upper triangularis Zone and perhaps part of the Middle triangularis Zone are missing.
The middle member of the Long Rapids Formation correlates with the Lower to Uppermost crepida zones. A sequence from high in the rhomboidea Zone to within the Lower marginifera to perhaps slightly into the Upper marginifera Zone occurs in the upper member of the formation.
Sixteen species are described, of which seven are new: Palmatolepis angularis, P. angusta, P. mystica, P. nodosa, P. parva, Palmatolepis n. sp. A, and Mehlina? unica. Two species that affect definition and identification of the Frasnian-Famennian boundary, P. triangularis and P. ultima (=P. praetriangularis), are revised.
Model alloys have been made of pure W and 1% & 5% W-Ta and W-Re. Indentation hardness and modulus data were obtained by nanoindentation to assess the effect of composition on mechanical properties. Results showed that both the Ta and Re compositions hardened with increasing alloy content, greater in the W-5%Ta composition which showed an increase of 1.03GPa (17%), compared to a 0.43GPa (7%) increase in W-5%Re. The samples also showed very small increases in modulus of ∼ 25GPa (6%) in both W-5%Re and W-5%Ta. The samples were implanted with 3000appm concentration of helium. All samples show a substantial increase in hardness of up to 107% in the case of pure W. An appreciable difference in modulus is also seen in all samples. Initial TEM work has shown no visible He bubbles, suggesting that the mechanical properties changes are due to He-vacancy cluster formation below the resolvable limit.