We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present an experimental study on the effects of polymer additives on the turbulent/non-turbulent interface (TNTI) in a fully developed round water jet. The Reynolds number based on the jet diameter is fixed at $Re=7075$. The Weissenberg number $Wi$ ranges from 24 to 86. We employ time-resolved simultaneous particle image velocimetry and laser-induced fluorescence measurements to investigate the local entrainment and engulfment process along the TNTI in two regimes: entrainment transition and enhancement regimes. In polymer-laden jets, the TNTI fluctuates more intermittently in the radial direction and more ambient fluid can be engulfed into the turbulent region due to the augmented large scale motion. Though the contribution of engulfment to the total flux increases with $Wi$, engulfment is still not the major contribution to the entrainment in polymer-laden jets. We further show that the local entrainment velocity is increased in both regimes compared with the pure water jet, due to two contributions: polymer elastic stress and the more intermittent character of the TNTI. In the entrainment transition regime, we observe smaller fractal dimension and shorter length of TNTI compared with the Newtonian case, consistent with previous numerical simulations (Abreu et al. J. Fluid Mech. vol. 934, 2022, A36); whereas those in the enhancement regime remain largely unchanged. The difference between the two regimes results from the fact that the jet flow decays in the streamwise direction. In the entrainment transition regime, turbulence intensity is strong enough to significantly stretch the polymers, resulting in a smoother TNTI in the inertial range. However, in the entrainment enhancement regime, the polymer’s feedback is not strong enough to alter the fractal dimension due to the low elasticity. The above mentioned differences of entrainment velocity and TNTI in the entrainment reduction/transition and enhancement regimes also explain the reduced and enhanced spreading rate of the viscoelastic jet observed in previous numerical simulations and experiments (Guimarães et al. J. Fluid Mech. 2020,vol. 899, A11; Peng et al. Phys. Fluids, 2023, vol. 35, 045110).
Digital technology enables employees to communicate with each other via virtual platforms. Emoji, particularly smile emoji, has received significant attention in virtual communication research. Drawing upon expectancy violation theory, we propose that in digital communications with followers, leader smile emoji usage has a positive effect on follower satisfaction with leader through perceived leader intimacy. In addition, leader smile emoji usage has a negative effect on perceived leader effectiveness through decreased perception of leader power. We further propose that the effects of leader smile emoji usage hinge on follower power distance orientation such that the negative effects of leader smile emojis usage are more pronounced for followers with high versus low power distance orientation. An experiment and a field study supported our hypotheses. Our research sheds light on the benefits and potential pitfalls of smile emoji usage in leader–follower digital communication.
The dynamic model of the distributed propulsion vehicle faces significant challenges due to several factors. The primary difficulties arise from the strong coupling between multiple power units and aerodynamic rudder surfaces, the interaction between thrust and vehicle dynamics, and the complexity of the aerodynamic model, which includes high-dimensional and high-order variables. To address these challenges, wind tunnel tests are conducted to analyse the aerodynamic characteristics and identify variables affecting the aerodynamic coefficients. Subsequently, a deep neural network is employed to investigate the influence of the power system and aerodynamic rudder on the aerodynamic coefficients. Based on these findings, a multi-dynamic coupled aerodynamic model is developed. Furthermore, a control-oriented nonlinear dynamics model for the distributed propulsion vehicle is established, and a flight controller is designed. Finally, closed-loop simulations for the climb, descent and turn phases are performed, validating the effectiveness of the established model.
In sharp contrast to the Hardy space case, the algebraic properties of Toeplitz operators on the Bergman space are quite different and abnormally complicated. In this paper, we study the finite-rank problem for a class of operators consisting of all finite linear combinations of Toeplitz products with monomial symbols on the Bergman space of the unit disk. It turns out that such a problem is equivalent to the problem of when the corresponding finite linear combination of rational functions is zero. As an application, we consider the finite-rank problem for the commutator and semi-commutator of Toeplitz operators whose symbols are finite linear combinations of monomials. In particular, we construct many motivating examples in the theory of algebraic properties of Toeplitz operators.
Eotetranychus kankitus is an important pest on several agricultural crops, and its resistance to pesticides has promoted the exploration of biological control strategies. Beauveria bassiana and Neoseiulus barkeri have been identified as potential agents for suppressing spider mites. This study aimed to investigate the pathogenicity of B. bassiana on E. kankitus and its compatibility with N. barkeri. Results showed that among the five tested strains of B. bassiana, Bb025 exhibited the highest level of pathogenicity on E. kankitus. Higher application rates (1 × 108 conidia/mL) of Bb025 led to a higher mortality rate of E. kankitus (90.402%), but also resulted in a 15.036% mortality of N. barkeri. Furthermore, preference response tests indicated that both E. kankitus and N. barkeri actively avoided plants sprayed with Bb025 compared to the control group that was sprayed with Tween-80. In a no-choice test, we observed that N. barkeri actively attacked Bb025-treated E. kankitus with no adverse effect on its predatory capacities. Furthermore, N. barkeri laid more eggs when fed on Bb025-treated E. kankitus compared to Tween-80-treated E. kankitus, but the subsequent generation of surviving individuals fed on Bb025-treated E. kankitus was reduced. These findings demonstrate that the Bb025 strain of B. bassiana is highly virulent against E. kankitus while causing less harm to N. barkeri. Consequently, a promising strategy for controlling E. kankitus could involve the sequential utilisation of Bb025 and N. barkeri at appropriate intervals.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
Why would a politically centralized state embark on the path of economic decentralization? This Element delves into the political origin of the puzzling economic decentralization in mainland China. The authors contend that the intra-elite conflicts between the authoritarian ruler and the ruling elites within the state prompted the ruler to pursue decentralization as a strategy to curb the influence wielded by the ruling elites. By examining the composition of the Chinese Communist Party's Central Committee, they find that the Cultural Revolution, fueled by elite conflicts, shifted the elite selectorate's composition from favoring central agencies to favoring local interests. Subsequent low turnover reinforced this shift, aligning elite incentives with decentralization policies and committing the Chinese leadership to a decentralized path in the 1980s. Additionally, Taiwan's economic liberalization under the Kuomintang's authoritarian rule provides further evidence of the link between ruling party elite composition and economic policy orientation.
We introduce a comprehensive data-driven framework aimed at enhancing the modeling of physical systems, employing inference techniques and machine-learning enhancements. As a demonstrative application, we pursue the modeling of cathodic electrophoretic deposition, commonly known as e-coating. Our approach illustrates a systematic procedure for enhancing physical models by identifying their limitations through inference on experimental data and introducing adaptable model enhancements to address these shortcomings. We begin by tackling the issue of model parameter identifiability, which reveals aspects of the model that require improvement. To address generalizability, we introduce modifications, which also enhance identifiability. However, these modifications do not fully capture essential experimental behaviors. To overcome this limitation, we incorporate interpretable yet flexible augmentations into the baseline model. These augmentations are parameterized by simple fully-connected neural networks, and we leverage machine-learning tools, particularly neural ordinary differential equations, to learn these augmentations. Our simulations demonstrate that the machine-learning-augmented model more accurately captures observed behaviors and improves predictive accuracy. Nevertheless, we contend that while the model updates offer superior performance and capture the relevant physics, we can reduce off-line computational costs by eliminating certain dynamics without compromising accuracy or interpretability in downstream predictions of quantities of interest, particularly film thickness predictions. The entire process outlined here provides a structured approach to leverage data-driven methods by helping us comprehend the root causes of model inaccuracies and by offering a principled method for enhancing model performance.
Zircon U-Pb geochronology, geochemistry and Hf isotope analysis of supracrustal rocks in the Anshan-Benxi area in the northeastern part of the North China Craton can help constrain their petrogenesis and tectonic background, providing evidence for a further investigation of the late Neoarchaean tectonic environment in the Anshan-Benxi area. The primary rock types observed among the supracrustal rocks in the Anshan-Benxi area comprise amphibolite, metamorphic rhyolite, metamorphic sandstone, chlorite schist, actinolite schist, among others. SHRIMP zircon U-Pb dating indicates that magmatic zircons from the amphibolite (GCN-1) formed at 2553 ± 18Ma. Similarly, LA-ICP-MS zircon U-Pb dating reveals that magmatic zircons from the metamorphic rhyolite (G2304-1) were formed at 2457 ± 35Ma. The peak age of the metamorphic sandstone is determined to be approximately 2500Ma, suggesting that the supracrustal rocks in the Anshan-Benxi area originated in the late Neoarchaean. The protoliths of sericite quartz schist and metamorphic rhyolite are identified as rhyolitic volcanic rocks, displaying a right-leaning distribution pattern of rare earth elements (REEs). On the other hand, actinolite schist, chlorite schist and amphibolite are classified as basaltic volcanic rocks, exhibiting a flat REE pattern with a weak negative Eu anomaly. The εHf(t) value of metamorphic rhyolite ranges between -1.19 and -1.47, with a two- stage depleted mantle model age of tDM2(Ma) = 2922–3132 Ma. The protolith magma of sericite quartz schist and metamorphic rhyolite originates from partial melting of 3.0Ga basaltic crust, while the source of actinolite schist, chlorite schist and amphibolite are mainly derived from the mantle. In summary, the findings suggest that plate already existed in the late Neoarchaean or earlier, with magmatism in the Anshan-Benxi area likely occurring within an arc tectonic environment linked to plate subduction.
This paper presents a classification of all simple Harish-Chandra modules for the $N=1$ Heisenberg–Virasoro superalgebra, which turn out to be highest weight modules, lowest weight modules, and evaluation modules of the intermediate series (all weight spaces are one dimensional). Moreover, a characterization of the tensor product of highest weight modules with intermediate series modules is obtained.
The large number of patients with ankle injuries and the high incidence make ankle rehabilitation an urgent health problem. However, there is a certain degree of difference between the motion of most ankle rehabilitation robots and the actual axis of the human ankle. To achieve more precise ankle joint rehabilitation training, this paper proposes a novel 3-PUU/R parallel ankle rehabilitation mechanism that integrates with the human ankle joint axis. Moreover, it provides comprehensive ankle joint motion necessary for effective rehabilitation. The mechanism has four degrees of freedom (DOFs), enabling plantarflexion/dorsiflexion, eversion/inversion, internal rotation/external rotation, and dorsal extension of the ankle joint. First, based on the DOFs of the human ankle joint and the variation pattern of the joint axes, a 3-PUU/R parallel ankle joint rehabilitation mechanism is designed. Based on the screw theory, the inverse kinematics inverse, complete Jacobian matrix, singular characteristics, and workspace analysis of the mechanism are conducted. Subsequently, the motion performance of the mechanism is analyzed based on the motion/force transmission indices and the constraint indices. Then, the performance of the mechanism is optimized according to human physiological characteristics, with the motion/force transmission ratio and workspace range as optimization objectives. Finally, a physical prototype of the proposed robot was developed, and experimental tests were performed to evaluate the above performance of the proposed robot. This study provides a good prospect for improving the comfort and safety of ankle joint rehabilitation from the perspective of human-machine axis matching.
With the over-use of tetracycline (TC) and its ultimate accumulation in aquatic systems, the demand for TC removal from contaminated water is increasing due to its severe threat to public health. Clay minerals have attracted great attention as low-cost adsorbents for controlling water pollution. The objective of the present study was to measure the adsorption behavior and mechanisms of TC on allophane, a nanosized clay mineral with a hollow spherical structure; to highlight the advantage of the allophane nanostructure, a further objective was to compare allophane with halloysite and montmorillonite, which have nanostructures that differ from allophane. Structural features and surface physicochemical properties were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential, N2-physisorption, and acid–base titration. The adsorption data showed that TC adsorption followed the pseudo-second order and Langmuir models. The adsorption was pH dependent, as all three clay minerals performed better under neutral to weakly alkaline conditions and maintained high adsorption performance in the presence of co-existing Na+/K+/Ca2+/Mg2+ cations. Regeneration of the adsorbent was excellent, with efficiencies exceeding 75% after five recycles. By comparison, allophane always exhibited the greatest adsorption capacity, up to 796 mg g–1 at ~pH 9. The TC adsorption on allophane and halloysite was dominated by inner-sphere complexation, together with a small amount of electrostatic adsorption, while that on montmorillonite involved mainly interlayer cation exchange. The findings provide insights into the effects of nanostructures of clay minerals on their TC adsorption performance and highlight the huge potential of allophane as an efficient and inexpensive adsorbent for TC removal.
Compacted bentonite, used as an engineering barrier for permanent containment of high-level radioactive waste, is susceptible to mineral evolution resulting in compromise of the expected barrier performance due to alkaline–thermal chemical interaction in the near-field. To elucidate the mineral-evolution mechanisms within bentonite and the transformation of the nuclide adsorption properties during that period, experimental evolution of bentonite was conducted in a NaOH solution with a pH of 14 at temperatures ranging from 60 to 120°C. The results showed that temperature significantly affects the stability of minerals in bentonite under alkali conditions. The dissolution rate of fine-grained cristobalite in bentonite exceeds that of smectite, with the phase-transition products of smectite being temperature-dependent. As the temperature rises, smectite experiences a three-stage transformation: initially, at 60°C, the lattice structure thins due to the collapse of the octahedral sheets; at 80°C, the lattice disintegrates and reorganizes into a loose framework akin to albite; and by 100°C, it further reorganizes into a denser framework resembling analcime. The adsorption properties of bentonite exhibit a peak inflection point at 80°C, where the dissolution of the smectite lattice eliminates interlayer pores and exposes numerous polar or negatively charged sites which results in a decrease in specific surface area and an increase in cation exchange capacity and adsorption capacity of Eu3+. This research provides insights into the intricate evolution of bentonite minerals and the associated changes in radionuclide adsorption capacity, contributing to a better understanding of the stability of bentonite barriers and the effective long-term containment of nuclear waste.
This paper investigates the precise large deviations of the net loss process in a two-dimensional risk model with consistently varying tails and dependence structures, and gives some asymptotic formulas which hold uniformly for all x varying in t-intervals. The study is among the initial efforts to analyze potential risk via large deviation results for the net loss process of the two-dimensional risk model, and can provide a novel insight to assess the operation risk in a long run by fully considering the premium income factors of the insurance company.
Folate metabolism is involved in the development and progression of various cancers. We investigated the association of single nucleotide polymorphisms (SNP) in folate-metabolising genes and their interactions with serum folate concentrations with overall survival (OS) and liver cancer-specific survival (LCSS) of newly diagnosed hepatocellular carcinoma (HCC) patients. We detected the genotypes of six SNP in three genes related to folate metabolism: methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). Cox proportional hazard models were used to calculate multivariable-adjusted hazard ratios (HR) and 95 % CI. This analysis included 970 HCC patients with genotypes of six SNP, and 864 of them had serum folate measurements. During a median follow-up of 722 d, 393 deaths occurred, with 360 attributed to HCC. In the fully-adjusted models, the MTRR rs1801394 polymorphism was significantly associated with OS in additive (per G allele: HR = 0·84, 95 % CI: 0·71, 0·99), co-dominant (AG v. AA: HR = 0·77; 95 % CI: 0·62, 0·96) and dominant (AG + GG v. AA: HR = 0·78; 95 % CI: 0·63, 0·96) models. Carrying increasing numbers of protective alleles was linked to better LCSS (HR10–12 v. 2–6 = 0·70; 95 % CI: 0·49, 1·00) and OS (HR10–12 v. 2–6 = 0·67; 95 % CI: 0·47, 0·95). Furthermore, we observed significant interactions on both multiplicative and additive scales between serum folate levels and MTRR rs1801394 polymorphism. Carrying the variant G allele of the MTRR rs1801394 is associated with better HCC prognosis and may enhance the favourable association between higher serum folate levels and improved survival among HCC patients.
Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is increasingly infesting imidazolinone-tolerant (IMI-T) rice (Oryza sativa L.) fields in China, and E. crus-galli imazamox resistance has become the major concern for weed management in IMI-T rice fields. In this study, the susceptible population JLGY-3 (S) and the suspected resistant population JHXY-2 (R) collected from IMI-T rice fields were used as research subjects. When treated with imazamox, the JHXY-2 (R) population showed a high level of herbicide resistance with a resistance index of 31.2. JHXY-2 (R) was cross-resistant to all five acetolactate synthase (ALS) inhibitors from different chemical families, but sensitive to herbicides inhibiting acetyl-CoA carboxylase. To understand the reason why JHXY-2 (R) was resistant to imazamox, we performed experiments to characterize potential target-site resistance (TSR) and non–target site resistance (NTSR) mechanisms. A Trp-574-Leu amino acid mutation in ALS and low imazamox ALS sensitivity were the main mechanisms underlying imazamox resistance in this JHXY-2 (R) population. There was no significant difference in ALS gene expression and ALS protein abundance between R and S populations. High-performance liquid chromatography–tandem mass spectrometry analysis showed enhanced metabolism of imazamox in JHXY-2 (R), which was in contrast to the results of pretreatment with a metabolic enzyme inhibitor. Treatments with cytochrome P450 monooxygenase/glutathione S-transferase (P450/GST) inhibitors did not alter the resistance level of JHXY-2 (R) against imazamox. Transcriptome sequencing showed that there was almost no significant difference in the expression of P450 and GST metabolic enzyme genes between R and S populations, and only GSTU1 showed a significant upregulation in the R population, further clarifying the NTSR mechanism of JHXY-2 (R). In conclusion, amino acid mutation and higher enzyme activity of ALS are the main causes of imazamox resistance in JHXY-2 (R). However, given the differences in imazamox residues in the leaves of E. crus-galli, there may still be undetectable NTSR mechanisms that are causing imazamox resistance in the R population.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
Depression is highly prevalent in haemodialysis patients, and diet might play an important role. Therefore, we conducted this cross-sectional study to determine the association between dietary fatty acids (FA) consumption and the prevalence of depression in maintenance haemodialysis (MHD) patients. Dietary intake was assessed using a validated FFQ between December 2021 and January 2022. The daily intake of dietary FA was categorised into three groups, and the lowest tertile was used as the reference category. Depression was assessed using the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline (RCS) models were applied to assess the relationship between dietary FA intake and the prevalence of depression. As a result, after adjustment for potential confounders, a higher intake of total FA [odds ratio (OR)T3 vs. T1 = 1·59, 95 % confidence interval (CI) = 1·04, 2·46] and saturated fatty acids (SFA) (ORT3 vs. T1 = 1·83, 95 % CI = 1·19, 2·84) was associated with a higher prevalence of depressive symptoms. Significant positive linear trends were also observed (P < 0·05) except for SFA intake. Similarly, the prevalence of depression in MHD patients increased by 20% (OR = 1.20, 95% CI = 1.01–1.43) for each standard deviation increment in SFA intake. RCS analysis indicated an inverse U-shaped correlation between SFA and depression (Pnonlinear > 0·05). Additionally, the sensitivity analysis produced similar results. Furthermore, no statistically significant association was observed in the subgroup analysis with significant interaction. In conclusion, higher total dietary FA and SFA were positively associated with depressive symptoms among MHD patients. These findings inform future research exploring potential mechanism underlying the association between dietary FA and depressive symptoms in MHD patients.
Isoproturon phytotoxicity to wheat (Triticum aestivum L.) is a worry for many farmers in chemical control of weeds in wheat fields, especially in subzero weather conditions. Iron chlorin e6 (ICe6), a new plant growth regulator, has been reported to enhance crop stress resistance to alleviate damage caused by stress; however, it is not clear whether ICe6 has an alleviative effect on isoproturon phytotoxicity to wheat. We determined the alleviative effect of ICe6 on isoproturon phytotoxicity to wheat, and 0.018 g ai ha−1 was the optimal dose. Meanwhile, we also studied the photosynthetic pigment content, photosynthetic parameters, oxidative stress indicators, and antioxidant enzyme activity of wheat treated with the three different treatments. We found that the photosynthetic pigment content, antioxidant enzyme activity, and photosynthesis of wheat damaged by isoproturon were significantly lower than those of the control, and the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content increased. These results indicate that isoproturon stress significantly weakened the photosynthetic and antioxidant capacity of wheat. The photosynthetic pigment content, photosynthetic parameters (excluding intercellular CO2 concentration), and antioxidant enzyme activity of isoproturon+ICe6– treated wheat were significantly higher than those of isoproturon-treated wheat. The H2O2 and MDA content was significantly lower than that of isoproturon-treated wheat. These results indicate that ICe6 treatment maintained the photosynthetic pigment content of wheat and relatively improved photosynthetic capacity, allowing photosynthesis to proceed normally. ICe6 treatment also limits the decrease in antioxidant enzyme activity, effectively clearing excess reactive oxygen species and ultimately alleviating membrane lipid peroxidation damage. In summary, ICe6 not only enhances stress resistance and increases yield in crops such as soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.), but also has an alleviating effect on the isoproturon phytotoxicity to wheat, which is manifested by the improvement of photosynthetic and antioxidant abilities, ultimately leading to an increase in wheat shoot height and shoot fresh weight.
The development of active and low-cost transition metal oxide-based catalysts was vital for the catalytic oxidation of toluene. This study aimed to prepare Fe-Mn oxide catalysts by Mn-rich limonite, and investigate the catalytic activity and mechanism for toluene oxidation. The natural Mn-rich limonite was thermally activated at different temperatures and these thermally activated samples exhibited different oxidation activities. YL-300, obtained through thermal treatment at 300°C, exhibited excellent catalytic activity, showing 90% toluene conversion at 239°C (1000 ppm toluene) and remarkable catalytic stability even in the presence of water vapor (5 vol.%). The amount of oxygen vacancies in the catalyst was regulated by tuning the thermal treatment temperatures. Optimal thermal treatment facilitated the increase of oxygen vacancies and enhanced the oxygen mobility and redox capacity of YL-300, contributing to the complete oxidation of toluene to H2O and CO2. The oxidation of toluene was greatly influenced by the adsorbed oxygen species. This study demonstrates the potential of Mn-rich limonite as a promising catalyst for toluene oxidation, thereby promoting the utilization of natural mineral materials in the field of environmental pollution control.