We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report the discovery of a bow-shock pulsar wind nebula (PWN), named Potoroo, and the detection of a young pulsar J1638$-$4713 that powers the nebula. We present a radio continuum study of the PWN based on 20-cm observations obtained from the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. PSR J1638$-$4713 was identified using Parkes radio telescope observations at frequencies above 3 GHz. The pulsar has the second-highest dispersion measure of all known radio pulsars (1 553 pc cm$^{-3}$), a spin period of 65.74 ms and a spin-down luminosity of $\dot{E}=6.1\times10^{36}$ erg s$^{-1}$. The PWN has a cometary morphology and one of the greatest projected lengths among all the observed pulsar radio tails, measuring over 21 pc for an assumed distance of 10 kpc. The remarkably long tail and atypically steep radio spectral index are attributed to the interplay of a supernova reverse shock and the PWN. The originating supernova remnant is not known so far. We estimated the pulsar kick velocity to be in the range of 1 000–2 000 km s$^{-1}$ for ages between 23 and 10 kyr. The X-ray counterpart found in Chandra data, CXOU J163802.6$-$471358, shows the same tail morphology as the radio source but is shorter by a factor of 10. The peak of the X-ray emission is offset from the peak of the radio total intensity (Stokes $\rm I$) emission by approximately 4.7$^{\prime\prime}$, but coincides well with circularly polarised (Stokes $\rm V$) emission. No infrared counterpart was found.
To develop a new caregiver-assisted pain coping skills training protocol specifically tailored for community-dwelling persons with cognitive impairment and pain, and assess its feasibility and acceptability.
Method
In Phase I, we conducted interviews with 10 patient–caregiver dyads to gather feedback about intervention content and delivery. Phase II was a single-arm pilot test to evaluate the intervention's feasibility and acceptability. Dyads in the pilot study (n = 11) completed baseline surveys, received five intervention sessions, and then completed post-intervention surveys. Analyses focused on feasibility and acceptability.
Results
Dyads responded positively to the pain coping skills presented in the interviews; their feedback was used to refine the intervention. Findings from the pilot study suggested that the intervention was feasible and acceptable. 69% of eligible dyads consented, 82% completed all five intervention sessions, and 100% completed the post-treatment assessment. Caregivers reported high satisfaction ratings. They also reported using the pain coping skills on a regular basis, and that they found most of the skills helpful and easy to use.
Significance of results
These preliminary findings suggest that a caregiver-assisted pain coping skills intervention is feasible and acceptable, and that it may be a promising approach to managing pain in patients with cognitive impairment.
To test the hypothesis that higher level of purpose in life is associated with lower likelihood of dementia and mild cognitive impairment (MCI) in older Brazilians.
Methods:
As part of the Pathology, Alzheimer’s and Related Dementias Study (PARDoS), informants of 1,514 older deceased Brazilians underwent a uniform structured interview. The informant interview included demographic data, the Clinical Dementia Rating scale to diagnose dementia and MCI, the National Institute of Mental Health Diagnostic Interview Schedule for depression, and a 6-item measure of purpose in life, a component of well-being.
Results:
Purpose scores ranged from 1.5 to 5.0 with higher values indicating higher levels of purpose. On the Clinical Dementia Rating Scale, 940 persons (62.1%) had no cognitive impairment, 121 (8.0%) had MCI, and 453 (29.9%) had dementia. In logistic regression models adjusted for age at death, sex, education, and race, higher purpose was associated with lower likelihood of MCI (odds ratio = .58; 95% confidence interval [CI]: .43, .79) and dementia (odds ratio = .49, 95% CI: .41, .59). Results were comparable after adjusting for depression (identified in 161 [10.6%]). Neither race nor education modified the association of purpose with cognitive diagnoses.
Conclusions:
Higher purpose in life is associated with lower likelihood of MCI and dementia in older black and white Brazilians.
As part of the Pathology, Alzheimer’s and Related Dementias Study, we conducted uniform structured interviews with knowledgeable informants (72% children) of 1,493 older (age > 65) Brazilian decedents.
Measurements:
The interview included measures of social isolation (number of family and friends in at least monthly contact with decedent), emotional isolation (short form of UCLA Loneliness Scale), and major depression plus the informant portion of the Clinical Dementia Rating Scale to diagnose dementia and its precursor, mild cognitive impairment (MCI).
Results:
Decedents had a median social network size of 8.0 (interquartile range = 9.0) and a median loneliness score of 0.0 (interquartile range = 1.0). On the Clinical Dementia Rating Scale, 947 persons had no cognitive impairment, 122 had MCI, and 424 had dementia. In a logistic regression model adjusted for age, education, sex, and race, both smaller network size (odds ratio [OR] = 0.975; 95% confidence interval [CI]: 0.962, 0.989) and higher loneliness (OR = 1.145; 95% CI: 1.060, 1.237) were associated with higher likelihood of dementia. These associations persisted after controlling for depression (present in 10.4%) and did not vary by race. After controlling for depression, neither network size nor loneliness was related to MCI.
Conclusion:
Social and emotional isolation are associated with higher likelihood of dementia in older black and white Brazilians.
To analyse associations between brain morphology and longitudinal and cross-sectional measures of outcomes in schizophrenia in a general population sample.
Methods
The sample was the Northern Finland 1966 Birth Cohort. In 1999–2001, structural brain MRI and measures of clinical and functional outcomes were analysed for 54 individuals with schizophrenia around the age of 34. Sex, total grey matter, duration of illness and the use of antipsychotic medication were used as covariates.
Results
After controlling for multiple covariates, increased density of the left limbic area was associated with less hospitalisations and increased total white matter volume with being in remission. Higher density of left frontal grey matter was associated with not being on a disability pension and higher density of the left frontal lobe and left limbic area were related to better functioning. Higher density of the left limbic area was associated with better longitudinal course of illness.
Conclusions
This study, based on unselected general population data, long follow-up and an extensive database, confirms findings of previous studies, that morphological abnormalities in several brain structures are associated with outcome. The difference in brain morphology in patients with good and poor outcomes may reflect separable aetiologies and developmental trajectories in schizophrenia.
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
The sulphur-poor portions of the dry condensed Cu-Fe-Pd-S system were studied at 1000°C, 900°C and 725°C by synthesis in evacuated silicate glass tubes, along with textural observations and electron microprobe analyses of equilibrated reaction products. Sulphide melt coexists with Cu-Fe-Pd alloys, bornite, Fe1-xS and iss (intermediate solid solution, Cabri, 1973) and Pd4S. Compositional data were obtained for the associations bornite-alloy-melt, pyrrhotite-alloy-melt and for immiscible Cu-rich sulphide melts. Partition coefficients for all three metals were derived for the association alloy-melt. Formation of the two new Cu-Pd alloy minerals, skaergaardite and nielsenite, is discussed in terms of the present findings.
Recent studies have improved our understanding of nearshore marine ecosystems surrounding Ascension Island (central Atlantic Ocean), but little is known about Ascension's benthic environment beyond its shallow coastal waters. Here, we report the first detailed physical and biological examination of the seabed surrounding Ascension Island at 100–1000 m depth. Multibeam swath data were used to map fine scale bathymetry and derive seabed slope and rugosity indices for the entire area. Water temperature and salinity profiles were obtained from five Conductivity, Temperature, Depth (CTD) deployments, revealing a spatially consistent thermocline at 80 m depth. A camera lander (Shelf Underwater Camera System; SUCS) provided nearly 400 images from 21 sites (100 m transects) at depths of 110–1020 m, showing high variability in the structure of benthic habitats and biological communities. These surveys revealed a total of 95 faunal morphotypes (mean richness >14 per site), complemented by 213 voucher specimens constituting 60 morphotypes collected from seven targeted Agassiz trawl (AGT) deployments. While total faunal density (maximum >300 m−2 at 480 m depth) increased with rugosity, characteristic shifts in multivariate assemblage structure were driven by depth and substratum type. Shallow assemblages (~100 m) were dominated by black coral (Antipatharia sp.) on rocky substrata, cup corals (Caryophyllia sp.) and sea urchins (Cidaris sp.) were abundant on fine sediment at intermediate depths (250–500 m), and shrimps (Nematocarcinus spp.) were common at greater depths (>500 m). Other ubiquitous taxa included serpulid and sabellid polychaetes and brittle stars (Ophiocantha sp.). Cold-water corals (Lophelia cf. pertusa), indicative of Vulnerable Marine Ecosystems (VMEs) and representing substantial benthic carbon accumulation, occurred in particularly dense aggregations at <350 m but were encountered as deep as 1020 m. In addition to enhancing marine biodiversity records at this locality, this study provides critical baseline data to support the future management of Ascension's marine environment.
Capturing service users’ perspectives can highlight additional and different concerns to those of clinicians, but there are no up to date, self-report psychometrically sound measures of side effects of antipsychotic medications.
Aim
To develop a psychometrically sound measure to identify antipsychotic side effects important to service users, the Maudsley Side Effects (MSE) measure.
Method
An initial item bank was subjected to a Delphi exercise (n = 9) with psychiatrists and pharmacists, followed by service user focus groups and expert panels (n = 15) to determine item relevance and language. Feasibility and comprehensive psychometric properties were established in two samples (N43 and N50). We investigated whether we could predict the three most important side effects for individuals from their frequency, severity and life impact.
Results
MSE is a 53-item measure with good reliability and validity. Poorer mental and physical health, but not psychotic symptoms, was related to side-effect burden. Seventy-nine percent of items were chosen as one of the three most important effects. Severity, impact and distress only predicted ‘putting on weight’ which was more distressing, more severe and had more life impact in those for whom it was most important.
Conclusions
MSE is a self-report questionnaire that identifies reliably the side-effect burden as experienced by patients. Identifying key side effects important to patients can act as a starting point for joint decision making on the type and the dose of medication.
Salmonella is a leading cause of bacterial foodborne illness. We report the collaborative investigative efforts of US and Canadian public health officials during the 2013–2014 international outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder. The investigation included open-ended interviews of ill persons, traceback, product testing, facility inspections, and trace forward. Ninety-four persons infected with outbreak strains from 16 states and four provinces were identified; 21% were hospitalized and none died. Fifty-four (96%) of 56 persons who consumed chia seed powder, reported 13 different brands that traced back to a single Canadian firm, distributed by four US and eight Canadian companies. Laboratory testing yielded outbreak strains from leftover and intact product. Contaminated product was recalled. Although chia seed powder is a novel outbreak vehicle, sprouted seeds are recognized as an important cause of foodborne illness; firms should follow available guidance to reduce the risk of bacterial contamination during sprouting.
Heteroepitaxial growth of high-quality II-VI-alloy materials on Si substrates is a well-established commercial growth process for infrared (IR) detector devices. However, it has only recently been recognized that these same processes may have important applications for production of high-efficiency photovoltaic devices. This submission reviews the process developments that have enabled effective heteroepitaxy of II-VI alloy materials on lattice-mismatched Si for IR detectors as a foundation to describe recent efforts to apply these insights to the fabrication of multijunction Si/CdZnTe devices with ultimate conversion efficiencies >40%. Reviewed photovoltaic studies include multijunction Si/CdZnTe devices with conversion efficiency of ∼17%, analysis of structural and optoelectrical quality of undoped CdTe epilayer films on Si, and the effect that a Te-rich growth environment has on the structural and optoelectronic quality of both undoped and As-doped heteroepitaxial CdTe.
Older African Americans tend to perform more poorly on cognitive function tests than older Whites. One possible explanation for their poorer performance is that the tests used to assess cognition may not reflect the same construct in African Americans and Whites. Therefore, we tested measurement invariance, by race and over time, of a structured 18-test cognitive battery used in three epidemiologic cohort studies of diverse older adults. Multi-group confirmatory factor analyses were carried out with full-information maximum likelihood estimation in all models to capture as much information as was present in the observed data. Four different aspects of the data were fit to each model: comparative fit index (CFI), standardized root mean square residuals (SRMR), root mean square error of approximation (RMSEA), and model $$\chi ^{2} $$. We found that the most constrained model fit the data well (CFI=0.950; SRMR=0.051; RMSEA=0.057 (90% confidence interval: 0.056, 0.059); the model $$\chi ^{2} $$=4600.68 on 862 df), supporting the characterization of this model of cognitive test scores as invariant over time and racial group. These results support the conclusion that the cognitive test battery used in the three studies is invariant across race and time and can be used to assess cognition among African Americans and Whites in longitudinal studies. Furthermore, the lower performance of African Americans on these tests is not due to bias in the tests themselves but rather likely reflect differences in social and environmental experiences over the life course. (JINS, 2016, 22, 66–75)
The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day−1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey aims to characterise the physical and chemical evolution of high-mass star-forming clumps. Exploiting the unique broad frequency range and on-the-fly mapping capabilities of the Australia Telescope National Facility Mopra 22 m single-dish telescope1, MALT90 has obtained 3′ × 3′ maps towards ~2 000 dense molecular clumps identified in the ATLASGAL 870 μm Galactic plane survey. The clumps were selected to host the early stages of high-mass star formation and to span the complete range in their evolutionary states (from prestellar, to protostellar, and on to $\mathrm{H\,{\scriptstyle {II}}}$ regions and photodissociation regions). Because MALT90 mapped 16 lines simultaneously with excellent spatial (38 arcsec) and spectral (0.11 km s−1) resolution, the data reveal a wealth of information about the clumps’ morphologies, chemistry, and kinematics. In this paper we outline the survey strategy, observing mode, data reduction procedure, and highlight some early science results. All MALT90 raw and processed data products are available to the community. With its unprecedented large sample of clumps, MALT90 is the largest survey of its type ever conducted and an excellent resource for identifying interesting candidates for high-resolution studies with ALMA.