We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
To meet the development needs of aeroengines for high thrust-to-weight ratios and fuel-air ratios, a high temperature rise triple-swirler main combustor was designed with a total fuel-air ratio of 0.037, utilising advanced technologies including staged combustion, multi-point injection and multi-inclined hole cooling. Fluent software was used to conduct numerical simulations under both takeoff and idle conditions, thereby obtaining the distribution characteristics of the velocity and temperature fields within the combustor, as well as the generation of pollutants. The simulation results indicate that under takeoff conditions, the high temperature rise triple-swirler combustor achieves a total pressure loss coefficient of less than 6% and a combustion efficiency exceeding 99%. Under takeoff conditions, the OTDF and RTDF values are 0.144 and 0.0738, respectively. The mole fraction of NOx emissions is 3,700ppm, while the mole fraction of soot emissions is 2.55×10−5ppm. Under idle conditions, the triple-swirler combustor maintains a total pressure loss coefficient of less than 6% and a combustion efficiency greater than 99.9%. The OTDF and RTDF values are 0.131 and 0.0624, respectively. The mole fractions of CO and UHC emissions are both 0×10−32ppm at the calculation limit of Fluent software.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Background: Interest in artificial intelligence (AI) and machine learning (ML) has been growing in neuroradiology, but there is limited knowledge on how this interest has manifested into research and the field’s trends, challenges, and future directions. Methods: The American Journal of Neuroradiology was queried for original research articles published since inception (Jan. 1, 1980) to Sept. 19, 2022 that contained any of the following key terms: “machine learning”, “artificial intelligence”, or “radiomics”. Articles were screened, categorized into Statistical Modelling (Type 1), AI/ML Development (Type 2), or End-user Application (Type 3) and then bibliometrically analyzed. Results: A total of 124 articles were identified with 85% being non-integration focused (Type 1 n = 41, Type 2 n = 65) and the remaining (n = 18) being Type 3. The total number of articles published grew two-fold in the last five years, with Type 2 articles mainly driving this growth. While most (66%) Type 2 articles were led by a radiologist with 55% possessing a postgraduate degree, a minority of Type 2 articles addressed bias (15%) and explainability (20%). Conclusions: The results of this study highlight areas for improvement but also strengths that stakeholders can consider when promoting the shift towards integrating practical AI/ML solutions in neuroradiology.
Background: After a transient ischemic attack (TIA) or minor stroke, the long-term risk of subsequent stroke is uncertain. Methods: Electronic databases were searched for observational studies reporting subsequent stroke during a minimum follow-up of 1 year in patients with TIA or minor stroke. Unpublished data on number of stroke events and exact person-time at risk contributed by all patients during discrete time intervals of follow-up were requested from the authors of included studies. This information was used to calculate the incidence of stroke in individual studies, and results across studies were pooled using random-effects meta-analysis. Results: Fifteen independent cohorts involving 129794 patients were included in the analysis. The pooled incidence rate of subsequent stroke per 100 person-years was 6.4 events in the first year and 2.0 events in the second through tenth years, with cumulative incidences of 14% at 5 years and 21% at 10 years. Based on 10 studies with information available on fatal stroke, the pooled case fatality rate of subsequent stroke was 9.5% (95% CI, 5.9 – 13.8). Conclusions: One in five patients is expected to experience a subsequent stroke within 10 years after a TIA or minor stroke, with every tenth patient expected to die from their subsequent stroke.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
TDuring COVID-19 pandemic, it was noticed that it was students who were mostly affected by the changes that aroused because of the pandemic. The interesting part is whether students’ well-being could be associated with their fields of study as well as coping strategies.
Objectives
In this study, we aimed to assess 1) the mental health of students from nine countries with a particular focus on depression, anxiety, and stress levels and their fields of study, 2) the major coping strategies of students after one year of the COVID-19 pandemic.
Methods
We conducted an anonymous online cross-sectional survey on 12th April – 1st June 2021 that was distributed among the students from Poland, Mexico, Egypt, India, Pakistan, China, Vietnam, Philippines, and Bangladesh. To measure the emotional distress, we used the Depression, Anxiety, and Stress Scale-21 (DASS-21), and to identify the major coping strategies of students - the Brief-COPE.
Results
We gathered 7219 responses from students studying five major studies: medical studies (N=2821), social sciences (N=1471), technical sciences (N=891), artistic/humanistic studies (N=1094), sciences (N=942). The greatest intensity of depression (M=18.29±13.83; moderate intensity), anxiety (M=13.13±11.37; moderate intensity ), and stress (M=17.86±12.94; mild intensity) was observed among sciences students. Medical students presented the lowest intensity of all three components - depression (M=13.31±12.45; mild intensity), anxiety (M=10.37±10.57; moderate intensity), and stress (M=13.65±11.94; mild intensity). Students of all fields primarily used acceptance and self-distraction as their coping mechanisms, while the least commonly used were self-blame, denial, and substance use. The group of coping mechanisms the most frequently used was ‘emotional focus’. Medical students statistically less often used avoidant coping strategies compared to other fields of study. Substance use was only one coping mechanism that did not statistically differ between students of different fields of study. Behavioral disengagement presented the highest correlation with depression (r=0.54), anxiety (r=0.48), and stress (r=0.47) while religion presented the lowest positive correlation with depression (r=0.07), anxiety (r=0.14), and stress (r=0.11).
Conclusions
1) The greatest intensity of depression, anxiety, and stress was observed among sciences students, while the lowest intensity of those components was found among students studying medicine.
2) Not using avoidant coping strategies might be associated with lower intensity of all DASS components among students.
3) Behavioral disengagement might be strongly associated with greater intensity of depression, anxiety, and stress among students.
4) There was no coping mechanism that provided the alleviation of emotional distress in all the fields of studies of students.
Bipolar disorder (BD) is a source of marked disability, morbidity, and premature death. There is a paucity of research on personalized psychosocial interventions for BD, especially in lowresource settings. A previously published pilot randomized controlled trial (RCT) of a Culturally adapted PsychoEducation (CaPE) intervention for BD in Pakistan reported higher patient satisfaction, enhanced medication adherence, knowledge and attitudes towards BD, and improvement in mood symptom scores and health-related quality of life measures compared to treatment-as-usual (TAU).
Objectives
This protocol describes a larger multicentre RCT to confirm the clinical and cost-effectiveness of CaPE in Pakistan.
Methods
A multicentre individual, parallel arm, RCT of CaPE in 300Pakistani adults with BD. Participants over the age of 18, with adiagnosis of bipolar I and II and who are currently euthymic, will berecruited from seven sites including Karachi, Lahore, Multan, Rawalpindi,Peshawar, Hyderabad and Quetta. Time to recurrence will be the primaryoutcome assessed using Longitudinal Interval Follow-up Evaluation(LIFE). Secondary measures will include mood symptomatology, qualityof life and functioning, adherence to psychotropic medications, andknowledge and attitudes towards BD.
Results
Full ethics approval has been received from National Bioethics Committee (NBC) of Pakistan and Centre for Addiction and Mental Health (CAMH), Toronto, Canada. The study has completed sixty-five screening across the seven centres, of which forty-eight participants have been randomised.
Conclusions
A successful trial will lead to rapid implementation of CaPE in clinical practice, not only in Pakistan, but also in other low-resource settings including those in high-income countries, to improve clinical outcomes, social and occupational functioning, and quality of life in South Asian and other minority patients with BD.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (H i) gas discs in $\sim$280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric H i data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical, and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation, and H i structural parameters. We quantify the H i structure by the size of the H i relative to the optical disc and the average H i surface density measured using effective and isodensity radii. For galaxies resolved by $>$$1.3$ beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended H i discs and lower H i surface densities: the isodensity H i structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by $>$2 beams. We find that galaxies with higher H i surface densities and more extended H i discs tend to be more star forming: the isodensity H i structural parameters have stronger correlations with star formation. Normalising the H i disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity H i radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results are in qualitative agreement with previous studies and demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution H i data and large, statistical studies using spatially unresolved, single-dish data.
Background: In meningiomas, CDKN2A/B deletions are associated with poor outcomes but are rare in most cohorts (1-5%). Large molecular datasets are therefore required to explore these deletions and their relationship to other prognostic CDKN2A alterations. Methods: We utilized multidimensional molecular data of 560 meningiomas from 5 independent cohorts to comprehensively interrogate the spectrum of CDKN2A alterations through DNA methylation, copy number variation, transcriptomics, and proteomics using an integrated molecular approach. Results: Meningiomas with either CDKN2A/B deletions (partial or homozygous loss) or an intact CDKN2A gene locus but elevated mRNA expression (CDKN2Ahigh) both had poor clinical outcomes. Increased CDKN2A mRNA expression was a poor prognostic factor independent of CDKN2A deletion. CDKN2A expression and p16 protein increased with tumor grade and more aggressive molecular and methylation groups. CDKN2Ahigh meningiomas and meningiomas with CDKN2A deletions were enriched for similar cell cycling pathways dysregulated at different checkpoints. p16 immunohistochemistry was unreliable in differentiating between meningiomas with and without CDKN2A deletions, but increased positivity was associated with increased mRNA expression. CDKN2Ahigh meningiomas were associated with gene hypermethylation, Rb-deficiency, and lack of response to CDK inhibition. Conclusions: These findings support the role of CDKN2A mRNA expression as a biomarker of clinically aggressive meningiomas with potential therapeutic implications.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
To investigate the relationship between lean muscle mass and treatment response in treatment-resistant late-life depression (TR-LLD). We hypothesized that lower lean muscle mass would be associated with older age, higher physical comorbidities, higher depressive symptom severity, and poorer treatment response.
Design:
Secondary analysis of a randomized, placebo-controlled trial.
Setting:
Three academic hospitals in the United States and Canada.
Participants:
Adults aged 60+ years with major depressive disorder who did not remit following open treatment with venlafaxine extended-release (XR) (n = 178).
Measurements:
We estimated lean muscle mass using dual-energy X-ray absorptiometry (DEXA) scans prior to and following randomized treatment with aripiprazole or placebo added to venlafaxine XR. Multivariate regressions estimated influence of demographic and clinical factors on baseline lean muscle mass, and whether baseline lean muscle mass was associated with treatment response, adjusted for treatment arm.
Results:
Low lean muscle mass was present in 22 (12.4%) participants. Older age and female sex, but not depressive symptom severity, were independently associated with lower lean muscle mass at baseline. Marital status, baseline depressive symptom severity, and treatment group were associated with improvement of depressive symptoms in the randomized treatment phase. Baseline lean muscle mass was not associated with improvement, regardless of treatment group.
Conclusion:
As expected, older age and female sex were associated with lower lean muscle mass in TR-LLD. However, contrary to prior results in LLD, lean muscle mass was not associated with depression severity or outcome. This suggests that aripiprazole augmentation may be useful for TR-LLD, even in the presence of anomalous body composition.
Limited studies provide direct evidence of Clonorchis sinensis adults in the early stage of gallbladder stone formation. Our current research systematically studied 33 gallbladder stones resembling adult worms and shed light on the definite connection of C. sinensis infection with concomitant cholelithiasis. A total of 33 gallbladder stones resembling adult C. sinensis worms were systematically analysed. Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray energy spectrometry were used to analyse the composition and microstructure. Meanwhile, a histopathological examination of the stone was carried out. The 33 gallbladder stones resembling adult C. sinensis worms included nine calcium carbonate (CaCO3) stones, 12 bilirubinate stones and 12 mixed stones. Clonorchis sinensis eggs were found in 30 cases, including all CaCO3 and mixed stones. Parasite tissues were detected in 12 cases, which were mainly CaCO3 stones or bilirubinate–CaCO3 mixed stones. The outer layer of stones was wrapped with 12.88% calcium salt, as revealed by X-ray energy spectrometry, while surprisingly, many C. sinensis eggs were found in the inner part of these stones. Based on our current findings, we concluded that calcification and packaging occurred after C. sinensis adult entrance into the gallbladder, subsequently leading to the early formation of CaCO3 or bilirubinate–CaCO3 mixed gallbladder stones. This discovery highlights definite evidence for C. sinensis infection causing gallbladder stones.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and $S/N$ in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
We investigate the scaling properties of the primary flow modes and their sensitivity to aspect ratio in a liquid gallium (Prandtl number $Pr = 0.02$) convection system through combined laboratory experiments and numerical simulations. We survey cylindrical aspect ratios $1.4 \le \varGamma \le 3$ and Rayleigh numbers $10^{4} \lesssim Ra \lesssim 10^{6}$. In this range the flow is dominated by a large-scale circulation (LSC) subject to low-frequency oscillations. In line with previous studies, we show robust scaling of the Reynolds number $Re$ with $Ra$ and we confirm that the LSC flow is dominated by a jump-rope vortex (JRV) mode whose signature frequency is present in velocity and temperature measurements. We further show that both $Re$ and JRV frequency scaling trends are relatively insensitive to container geometry. The temperature and velocity spectra consistently show peaks at the JRV frequency, its harmonic and a secondary mode. The relative strength of these peaks changes and the presence of the secondary peak depend highly on aspect ratio, indicating that, despite having a minimal effect on typical velocities and frequencies, the aspect ratio has a significant effect on the underlying dynamics. Applying a bandpass filter at the secondary frequency to velocity measurements reveals that a clockwise twist in the upper half of the fluid layer coincides with a counterclockwise twist in the bottom half, indicating a torsional mode. For aspect ratio $\varGamma = 3$, the unified LSC structure breaks down into multiple rolls in both simulation and experiment.
Mental health regional differences during pregnancy through the COVID-19 pandemic is understudied.
Objectives
We aimed to quantify the impact of the COVID-19 pandemic on maternal mental health during pregnancy.
Methods
A cohort study with a web-based recruitment strategy and electronic data collection was initiated in 06/2020. Although Canadian women, >18 years were primarily targeted, pregnant women worldwide were eligible. The current analysis includes data on women enrolled 06/2020-11/2020. Self-reported data included mental health measures (Edinburgh Perinatal Depression Scale (EPDS), Generalized Anxiety Disorders (GAD-7)), stress. We compared maternal mental health stratifying on country/continents of residence, and identified determinants of mental health using multivariable regression models.
Results
Of 2,109 pregnant women recruited, 1,932 were from Canada, 48 the United States (US), 73 Europe, 35 Africa, and 21 Asia/Oceania. Mean depressive symptom scores were lower in Canada (EPDS 8.2, SD 5.2) compared to the US (EPDS 10.5, SD 4.8) and Europe (EPDS 10.4, SD 6.5) (p<0.05), regardless of being infected or not. Maternal anxiety, stress, decreased income and access to health care due to the pandemic were increasing maternal depression. The prevalence of severe anxiety was similar across country/continents. Maternal depression, stress, and earlier recruitment during the pandemic (June/July) were associated with increased maternal anxiety.
Conclusions
In this first international study on the impact of the COVID-19 pandemic, CONCEPTION has shown significant country/continent-specific variations in depressive symptoms during pregnancy, whereas severe anxiety was similar regardless of place of residence. Strategies are needed to reduce COVID-19’s mental health burden in pregnancy.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.