We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
Objectives/Goals: Our study’s objective is to evaluate RadOnc-GPT, a GPT-4o powered LLM, in generating responses to in-basket messages related to prostate cancer treatment in the Radiation Oncology department. By integrating it with electronic health record (EHR) systems, the goal is to assess its impact on clinician workload, response quality, and efficiency in healthcare communication. Methods/Study Population: RadOnc-GPT was integrated with patient EHRs from both hospital-wide and radiation-oncology-specific databases. The study examined 158 pre-recorded in-basket message interactions from 90 non-metastatic prostate cancer patients. Quantitative natural language processing analysis and two randomized single-blinded grading studies, involving four clinicians and four nurses, were conducted to evaluate RadOnc-GPT’s response quality in completeness, correctness, clarity, empathy, and estimated editing time. Response times were measured to estimate the time saved for clinicians and nurses. The study population included patient messages across all phases of care (pre-, during, and post-treatment) for those undergoing radiotherapy. Results/Anticipated Results: In the single-blinded grader study, clinician graders evaluated 316 responses (158 from human care teams and 158 from RadOnc-GPT). Results showed RadOnc-GPT outperformed human responses in empathy and clarity, while humans excelled in completeness and correctness. Sentiment analyses using TextBlob and VADER revealed RadOnc-GPT responses had a positive mean score of 0.25, whereas human responses clustered around neutral. VADER analysis indicated a high median score for RadOnc-GPT, nearing 1.0, reflecting predominantly positive sentiment, while human responses displayed a broader sentiment range, indicating sensitivity to context. Clinicians averaged 3.60 minutes (SD 1.44) to respond, compared to 6.39 minutes (SD 4.05) for nurses, highlighting RadOnc-GPT’s efficiency in generating timely responses. Discussion/Significance of Impact: RadOnc-GPT effectively generated responses to individualized patient in-basket messages, comparable to those from radiation oncologists and nurses. While human oversight is still necessary to avoid errors, RadOnc-GPT can speed up response times and reduce pressure on care teams, shifting their role from drafting to reviewing responses.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
Studying the effect of interleukin-17 (IL-17) on the mechanism of CD4+ T-cell immune regulation and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway may offer new ideas and methods for the therapy of dilated cardiomyopathy.
Methods:
Naive CD4+ T cells were isolated from mice using a magnetic bead sorting reagent and manipulated by overexpression or knockdown of IL-17. Protein levels of Janus kinase 2 (JAK2), phosphorylated JAK2 (p-JAK2), signal transducer and activator of transcription 3 (STAT3), phosphorylated STAT3 (p-STAT3), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were determined by Western blotting. Quantitative polymerase chain reaction was used to assess the levels of JAK2, STAT3, MMP-2, and MMP-9. Expression of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-4 (IL-4), and interferon-gamma (IFNγ) was determined by enzyme-linked immunosorbent assay test kits. TNF-α, IL-1β, IL-4, and IFNγ secretion was measured by flow cytometry.
Results:
In CD4+ T cells, IL-17 overexpression increased TNF-α, IL-1β, IL-4, IFNγ, p-JAK2, p-STAT3, MMP-2, MMP-9 levels, and apoptosis. Knockdown of IL-17 reduced the levels of TNF-α, IL-1β, IL-4, IFNγ, p-JAK2, p-STAT3, MMP-2, and MMP-9, as well as the level of apoptosis.
Conclusion:
Through regulation of IL-17 expression in CD4+ T cells, this study reveals its crucial role in regulating the secretion of inflammatory factors, activation of the JAK/STAT signaling pathway, expression of matrix metalloproteinases, and apoptosis of CD4+ T cells.
Time-domain characterization of ultrashort pulses is essential for studying interactions between light and matter. Here, we propose and demonstrate an all-optical pulse sampling technique based on reflected four-wave mixing with perturbation on a solid surface. In this method, a weak perturbation pulse perturbs the four-wave mixing signal generated by a strong fundamental pulse. The modulation signal of the four-wave mixing, which is detected in the reflection geometry to ensure a perfect phase-matching condition, directly reflects the temporal profile of the perturbation pulse. We successfully characterized multi-cycle and few-cycle pulses using this method. The reliability of our approach was verified by comparing it to the widely employed frequency-resolved optical gating method. This technique provides a simple and robust method for characterizing ultrashort laser pulses.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
The associations between obesity and liver diseases are complex and diverse. To explore the causal relationships between obesity and liver diseases, we applied two-sample Mendelian randomisation (MR) and multivariable MR analysis. The data of exposures (BMI and WHRadjBMI) and outcomes (liver diseases and liver function biomarker) were obtained from the open genome-wide association study database. A two-sample MR study revealed that the genetically predicted BMI and WHRadjBMI were associated with non-alcoholic fatty liver disease, liver fibrosis and autoimmune hepatitis. Obesity was not associated with primary biliary cholangitis, liver failure, liver cell carcinoma, viral hepatitis and secondary malignant neoplasm of liver. A higher WHRadjBMI was associated with higher levels of biomarkers of lipid accumulation and metabolic disorders. These findings indicated independent causal roles of obesity in non-alcoholic fatty liver disease, liver fibrosis and impaired liver metabolic function rather than in viral or autoimmune liver disease.
Depression is a significant mental health concern affecting the overall well-being of adolescents and young adults. Recently, the prevalence of depression has increased among young people. Nonetheless, there is little research delving into the longitudinal epidemiology of adolescent depression over time.
Aims
To investigate the longitudinal epidemiology of depression among adolescents and young adults aged 10–24 years.
Method
Our research focused on young people (aged 10–24 years) with depression, using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. We explored the age-standardised prevalence, incidence and disability-adjusted life-years (DALYs) of depression in different groups, including various regions, ages, genders and sociodemographic indices, from 1990 to 2019.
Results
The prevalence, incidence and DALYs of depression in young people increased globally between 1990 and 2019. Regionally, higher-income regions like High-Income North America and Australasia recorded rising age-standardised prevalence and incidence rates, whereas low- or middle-income regions mostly saw reductions. Nationally, countries such as Greenland, the USA and Palestine reported the highest age-standardised prevalence and incidence rates in 2019, whereas Qatar witnessed the largest growth over time. The burden disproportionately affected females across age groups and world regions. The most prominent age effect on incidence and prevalence rates was in those aged 20–24 years. The depression burden showed an unfavourable trend in younger cohorts born after 1980, with females reporting a higher cohort risk than males.
Conclusions
Between 1990 and 2019, the general pattern of depression among adolescents varied according to age, gender, time period and generational cohort, across regions and nations.
Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear.
Objectives
To investigate status and associated factors of nurses’ burnout during COVID-19 regular prevention and control.
Methods
784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor–Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory.
Results
310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA.
Conclusion
Chinese nurses’ burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.
In Malaysia, a nationwide movement control order (MCO), implemented to curb the COVID-19 spread, impacted on the lives of the working population which could impair sleep quality.
Objective
This study aims to find the sleep quality status and its association with the socioeconomic, employment and lifestyle factors of working adults during the MCO period.
Methods
A cross-sectional study was conducted among 500 eligible working adults. Data were collected using a structured questionnaire consisting of the Pittsburg Sleep Quality Index.
Results
The proportion of poor sleep quality is found to be 59.4%. Analysis shows that the use of electronic devices before sleep (OR = 2.33, 95% CI = 1.02–5.35, p-value = 0.046), increased amount of workload (OR = 0.45, p-value = 0.005), decreased in amount of workload (OR = 0.48, p-value = 0.003) and distracted while working (OR = 0.57, p-value = 0.014) are the factors significantly associated with and are predictors of poor sleep quality.
Conclusion
During crisis, there is a need for public health interventions for the working population to adopt a healthy lifestyle. Employers are recommended to support employees’ well-being and to provide a healthy workplace during challenging times. Policy recommendations are also made to implement flexible working arrangements, workload management, workplace mental health support and legal protections on reasonable working hours, rest breaks and time off during crises.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
Electro-osmotic chemical treatment is an innovative method to improve the strength of soft clays for geotechnical engineering purposes; the effectiveness of the treatment may be related to treatment time, the concentration of the solutions injected, and to variation of pH in the clay. The objective of this study was to investigate the relationship between the above-mentioned factors and the improvement in strength when calcium chloride solution was used as an injection material. A series of tests was carried out by injecting different concentrations of calcium chloride solution into a kaolin suspension, for different treatment times, during electro-osmosis. After the tests, the pH, cone resistance, water content, and concentration of Ca2+ in the kaolin at different locations were measured and analyzed. The results show that the concentration of Ca2+ in the kaolin, the pH, and the strength were increased near the cathode with increases in concentration of CaCl2 and treatment time. An insignificant increase in strength, due to ion exchange over the entire specimen, for short treatment times of 2 to 24 h, was observed because of a small increase in concentration of Ca2+ and in pH. During long-term treatment (120 h), a considerable increase in concentration of Ca2+ (137.0 mg/g) and pH (pH = 10) was observed near the cathode. This led to a pozzolanic reaction, which in turn caused a significant increase in the mechanical strength of the kaolin.
In order to minimize the initial energy storage of tens of MA-class Z-pinch accelerators, an intelligent optimization method was developed based on the transmission line code circuit model and PSOGSA algorithm. Using several input parameters, the four overall parameters of the Z-pinch accelerator could be fast determined, including the connection and parallel combination of LTD cavities, the outer radius of the stack-MITL system, and electrical length of monolithic radial transmission lines. The optimization method has been verified by comparing the results with the Z-300 and Z-800 conceptual designs. By means of this intelligent optimization, some factors that affect the initial energy storage on high-current Z-pinch accelerators have been investigated, such as the operating electrical fields, the diameter of the stack-MITL system, and the inner diameter of the LTD cavity. The suggestions for designing relatively low-cost, efficient LTD-based accelerators have been proposed.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.