We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using longitudinal data on teams and quality competition results, this study examines the impact of team and task familiarity on brewing excellence in the Japanese sake industry from 1956 to 2018. Sake production involves teamwork at every stage, but while some teams work together long term, others experience high turnover. The study highlights two factors: team familiarity, the collective experience of working together, and task familiarity, the individual experience of the task. High familiarity can strengthen team bonds and improve teamwork, but it can also limit the inflow of new knowledge and thus hinder innovation. This study uses data from national quality competitions and brewer lists, and considers the Great East Japan Earthquake of 2011 as an external shock to address endogeneity and estimate the causal relationship between familiarity and competition outcomes. The empirical results show that increases in both team and task familiarity are negatively associated with quality superiority.
Healthcare-associated infections (HAIs) pose significant challenges to healthcare systems worldwide. Epidemiological data are essential for effective HAI control; however, comprehensive information on HAIs in Japanese hospitals is limited. This study aimed to provide an overview of HAIs in Japanese hospitals.
Methods:
A multicenter point-prevalence survey (PPS) was conducted in 27 hospitals across the Aichi Prefecture between February and July 2020. This study encompassed diverse hospital types, including community, university, and specialized hospitals. Information on the demographic data of the patients, underlying conditions, devices, HAIs, and causative organisms was collected.
Results:
A total of 10,199 patients (male: 5,460) were included in this study. The median age of the patients was 73 (interquartile range [IQR]: 56–82) years, and the median length of hospital stay was 10 (IQR: 4–22) days. HAIs were present in 6.6% of patients, with pneumonia (1.83%), urinary tract infection (1.09%), and surgical site infection (SSI) (0.87%) being the most common. The prevalence of device-associated HAIs was 0.91%. Staphylococcus aureus (17.3%), Escherichia coli (17.1%), and Klebsiella pneumoniae (7.2%) were the primary pathogens in 433 organisms; 29.6% of the Enterobacterales identified showed resistance to third-generation cephalosporins. Pneumonia was the most prevalent HAI in small-to-large hospitals (1.69%–2.34%) and SSI, in extra-large hospitals (over 800 beds, 1.37%).
Conclusions:
This study offers vital insights into the epidemiology of HAIs in hospitals in Japan. These findings underscore the need for national-level PPSs to capture broader epidemiological trends, particularly regarding healthcare challenges post-COVID-19.
This study confirms the effectiveness of pretreatment video-based psychoeducation on stress management and relaxation in reducing depression, anxiety, and uncertainty among patients with breast cancer.
Methods
We conducted a nonrandomized trial with 86 pretreatment patients with breast cancer who were divided equally into intervention and control groups, and stratified according to cancer stages and patient ages. Omitting the excluded participants, 35 intervention group and 36 control group participants were asked to complete the Hospital Anxiety and Depression Scale and Universal Uncertainty in Illness Scale (UUIS) before the psychoeducational intervention (baseline, hereafter “BL “) as well as 1 and 3 months later. Then, a 2 group (intervention and control groups) × 3 time points (BL and 1 and 3 months post-intervention) mixed models repeated measures (MMRM) analysis was implemented.
Results
Analysis confirmed interaction between 2 group × 3 time points for depression, anxiety, and UUIS. Multiple comparisons revealed that each score in the intervention group was significantly lower 1 and 3 months post-intervention compared to BL. Meanwhile, in the control group, the depression score was significantly higher at 3 months post-intervention compared to pre-intervention. The anxiety scores and UUIS of the same group were not significantly different between 1 and 3 months post-intervention. The effect size values 3 months post-intervention were −0.57 for depression, −0.25 for anxiety, and 0.05 for uncertainty.
Significance of results
Pretreatment psychoeducation reduced depression, anxiety, and uncertainty in the intervention group of patients with breast cancer compared to the control group. The effect sizes at 3 months post-intervention were moderate for depression and small for anxiety. These results suggest the effectiveness of psychoeducation for patients with breast cancer, using videos on stress management and relaxation, early at the pretreatment stage.
Although glucose is the best-known nutrient to stimulate glucagon-like peptide-1 (GLP-1) secretion, dietary peptides also potently stimulate GLP-1 secretion. Certain peptide fragments derived from dietary proteins possess dipeptidyl peptidase-4 (DPP-4) inhibitory activity in vitro. Hence, we hypothesised that dietary peptides protect GLP-1 from degradation through attenuating DPP-4 activity in vivo. Here, we compared GLP-1 responses with dietary proteins, a carbohydrate and a lipid (Intralipos) in rats having or not having plasma DPP-4 activity. Plasma GLP-1 concentrations clearly increased by oral administration of whey protein (2–4 g/kg), but not by that of dextrin (2–4 g/kg), in control rats (untreated Sprague–Dawley rats and F344/Jcl rats), having DPP-4 activity. In contrast, dextrin administration increased the plasma GLP-1 concentrations as the whey protein administration did, in rats having reduced or no DPP-4 activity (a DPP-4 inhibitor, sitagliptin-treated Sprague–Dawley rats or DPP-4-deficient F344/DuCrl/Crlj rats). DPP-4 inhibition by sitagliptin treatment also enhanced GLP-1 response to Intralipos, and casein, but the treatment did not further enhance GLP-1 response to whey protein. Intestinal GLP-1 content and gastric emptying rate were not associated with differences in GLP-1 responses to test nutrients. The luminal contents from rats administered whey protein decreased DPP-4 activity in vitro. These results suggest that GLP-1 released by dextrin, Intralipos and casein was immediately degraded by DPP-4, while GLP-1 released by whey protein was less degraded. Our study provides novel in vivo evidence supporting the hypothesis that dietary peptides not only stimulate GLP-1 secretion but also inhibit DPP-4 activity to potentiate GLP-1 response.
The {100}-oriented (CaxSr1-x)Si2 thin films have been prepared by co-sputtering method at various deposition temperatures. Constituent phase of the films primarily depends on the deposition temperature and the composition x. Although CaSi2 films consisted of layered structure regardless of deposition temperature, the phase was changed by the deposition temperature: the majority phases of the film deposited at 600°C, 650°C and 700°C were 1T layered structure, 1T layered structure + 2H layered structure and 1T layered structure + 6R layered structure, respectively. When the (CaxSr1-x)Si2 films deposited at 700°C, the α-SrSi2-type phase was mainly confirmed below x = 0.17, which is the most stable phase of SrSi2. However, the main phase of all CaxSr1-xSi2 films deposited at 600°C changed to be 1T-type layered structure. Substitution with Ca below x = 0.50 in the film deposited at 600°C led to the decrease in the electrical resistivity compared with that of pure SrSi2.
The onset of transient turbulence in minimal plane Couette flow has been identified theoretically as homoclinic tangency with respect to a simple edge state for the Navier–Stokes equation, i.e., the gentle periodic orbit (the lower branch of a saddle-node pair) found by Kawahara & Kida (J. Fluid Mech., vol. 449, 2001, pp. 291–300). The first tangency of a pair of distinct homoclinic orbits to this periodic edge state has been discovered at Reynolds number $Re\equiv Uh/\unicode[STIX]{x1D708}=Re_{T}\approx 240.88$ ($U$, $h$, and $\unicode[STIX]{x1D708}$ being half the difference of the two wall velocities, half the wall separation, and the kinematic viscosity of fluid, respectively). At $Re>Re_{T}$ a Smale horseshoe appears on the Poincaré section through transversal homoclinic points to generate a transient chaos that eventually relaminarises. In numerical experiments a sustaining chaos, which is a consequence of period-doubling cascade stemming from the upper branch of another saddle-node pair of periodic orbits, is observed in a narrow range of the Reynolds number, $Re\approx 240.40$–240.46. At the upper edge of this $Re$ range it is found that the chaotic set touches the lower branch of this pair, i.e., another edge state. The corresponding chaotic attractor is replaced by a chaotic saddle at $Re\approx 240.46$, and subsequently this saddle touches the gentle periodic edge state on the boundary of the laminar basin at the tangency Reynolds number $Re=Re_{T}$. After this crisis on the boundary of the laminar basin, for $Re>Re_{T}$, chaotic transients that eventually relaminarise can be observed.
Ca-Mg-Si films were firstly prepared on (001)Al2O3 substrates by RF-magnetron sputtering method from Mg disc target together with Ca and Si chips. The composition of the deposited films was controlled by adjusting deposition temperature and Ca/Si area ratio of Ca and Si chips on Mg disk target. Ca0.32Mg0.33Si0.35 film deposited at 610 K consisted of a single phase of CaMgSi and this CaMgSi phase was stable after heat treated at 770 K under an atmospheric Ar with 5% -H2. As-deposited film shows the semiconductor behavior and have a power factor of 50 μW/(mK2) at 670 K, while annealed one showed the metallic behavior and its power factor down below 10 μW/(mK2) at 320-770 K. On the other hand, Ca0.27Mg0. 51Si0.2 film deposited at 590 K showed no obvious crystalline phase but became single phase of Ca7Mg7.25Si14 after heat treatment at 770 K under an atmospheric Ar with 5% -H2. As deposited film had a large power factor of 100 μW/(mK2) at 670 K. However, power factor decreased below 1 μW/(mK2) at 320-770K after the heat treatment at 770 K under an atmospheric Ar with 5% -H2.
A method for controlling the conduction-type in Mg2Si films without doping is investigated. Mg2Si films exhibit p-type conduction after a post-heat treatment up to 500 °C in atmospheric He. However, covering the films with Mg ribbon during a subsequent heat treatment at 500 °C converts the conduction to n-type, demonstrating that the heat treatment atmosphere can control the conduction type. Based on the reported first principles calculations suggesting that interstitial Mg and Mg vacancies in Mg2Si are the origins of n-type and p-type conduction, respectively, the post-heat treatment in He induces Mg vacancies due to the evaporation of Mg from the film, resulting in p-type conduction. The subsequent heat treatment when the film is covered with Mg ribbon fills the Mg vacancies and the additional interstitial Mg is incorporated, resulting in n-type conduction. These observations differ from the reported data for heat treatment of stable n-type conduction in non-doped Mg2Si-sintered bodies and may realize a novel control method for the conduction type in Mg2Si films.
Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.
(KxNa1−x)NbO3 films were deposited on Nb-doped (100)SrTiO3 substrates at 240 °C for times between 1 and 6 h by a hydrothermal method. Over this time series, the measured (K + Na)/Nb ratio of the films was found to remain constant, but the bulk K/(K + Na) ratio, x, decreased from an initial value of 0.75–0.56. It was determined that film growth initially proceeded through crystallization of the K-rich phase (K0.75Na0.25)NbO3. For film growth times greater than 3 h, a second perovskite phase with a smaller unit cell volume was detected, with an estimated composition of (K0.36Na0.64)NbO3. As such, the measured bulk composition value x = 0.56 was determined to be the result of a combination of these two phases, as opposed to originating from a single phase. Cross-sectional transmission electron microscopy analyses of films prepared for 6 h revealed that they consist of two layers in the direction normal to the substrate; this bilayer-type structure, only observed for hydrothermal growth of this material, is considered to arise from the large solubility mismatch between the Nb precursor and KOH and NaOH in the growth solution.
We consider a two-dimensional reflecting random walk on the non-negative integer quadrant. It is assumed that this reflecting random walk has skip-free transitions. We are concerned with its time-reversed process assuming that the stationary distribution exists. In general, the time-reversed process may not be a reflecting random walk. In this paper, we derive necessary and sufficient conditions for the time-reversed process also to be a reflecting random walk. These conditions are different from but closely related to the product form of the stationary distribution.
A RF magnetron sputtering method was used to prepare Mg2Si films at 300-400oC on (001) Al2O3 substrates from a Mg disc target with Si chips. Mg deposition was not detected at 400°C from a pure Mg disc target without Si chips due to the high vapor pressure of Mg. However, the amount of Mg deposition increased with the increase in Si/(Mg+Si) area ratio of the target surface together with the increase of the Si deposition. The obtained films had a stoichiometric composition of Si/(Mg+Si)=0.33 that consisted of the well crystalline Mg2Si single phase regardless of Si/(Mg+Si) area ratio of the target surface. This showed the existence of a “process window” against supply ratio of Si/(Mg+Si) for Mg2Si single phase films with a stoichiometric composition. This is considered to be due to the vaporization of the excess Mg prepared under the Mg excess condition as reported by Mahan et al. for Mg2Si films prepared at 200°C by ultra-high vacuum evaporation.
Japan experienced a transformational phase of technological development during the late nineteenth and early twentieth centuries. We argue that an important, but so far neglected, factor was a developing market for innovation and a patent-attorney system that was conducive to rapid technical change. We support our hypothesis using patent data and we also present a detailed case study on Tomogorō Ono, a key developer of salt-production technology who used attorneys in connection with his patenting work at a time when Japan was still in the process of formally institutionalizing its patent-attorney system. In accordance with Lamoreaux and Sokoloff's 1999 influential study of trade in invention in the United States, our quantitative and qualitative evidence highlights how inventors and intermediaries in Japan interacted to create a market for new ideas.
Background: Inflated responsibility is the main feature of cognitive-behavioural models of obsessive-compulsive disorder (OCD). However, few studies have examined the effect of cognitive-behavioural group therapy (CBGT) on inflated responsibility. Aim: The aim of this study was to examine the effect of CBGT on OCD symptoms and responsibility beliefs. Methods: Thirty-six subjects meeting Diagnostic and Statistical Manual of Mental Disorders, 4th edition, criteria for OCD were recruited to CBGT, and 28 of them completed 12 sessions. Subjects were assessed using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), the Responsibility Attitude Scale (RAS), and the Responsibility Interpretations Questionnaire (RIQ) at pre- and post-treatment. Results: Y-BOCS, RAS and RIQ (belief) scores were significantly improved at the end of the treatment. Conclusion: This study indicates that CBGT improves not only obsessive-compulsive symptoms but also inflated responsibility beliefs in patients with OCD.
Many parsing techniques assume the use of a packed parse forest to enable efficient and accurate parsing. However, they suffer from an inherent problem that derives from the restriction of locality in the packed parse forest. Deterministic parsing is one solution that can achieve simple and fast parsing without the mechanisms of the packed parse forest by accurately choosing search paths. We propose new deterministic shift-reduce parsing and its variants for unification-based grammars. Deterministic parsing cannot simply be applied to unification-based grammar parsing, which often fails because of its hard constraints. Therefore, this is developed by using default unification, which almost always succeeds in unification by overwriting inconsistent constraints in grammars.
We have investigated the resistance switching effect in Cu nanogap junction. Nanogap structures were created by means of electromigration and their electrical properties were measured in a high vacuum chamber. The measured current-voltage characteristics exhibited a clear negative resistance and memory effect with a large on-off ratio of over 105. The estimation from I-V curves indicates that the resistance switching was caused by the gap size change, which implies that the nanogap switching (NGS) effect also occurs in Cu electrodes, a popular wiring material in an integrated circuit.
We have examined how the morphology of the trench sidewall evolves in the early phase of hydrogen annealing under the two conditions of hydrogen pressures. A distinguished result was obtained concerning the sidewall surface morphology after 30 s annealing at 1000 °C under 760 Torr hydrogen ambient. The evanescence of chemical Si dioxide formed by RCA cleaning process was clearly observed to initiate in various places on the surface. And in the area without chemical oxide, the appearance of atomic steps was also observed. In contrast under 40 Torr hydrogen ambient, the chemical oxide was completely removed even after 30 s annealing. Our observation shows that not only the rate of trench shape transformation but also the rate of removal of oxide films decreases with increasing hydrogen pressure.
Laryngeal necrosis is a serious complication that usually occurs within the first year following completion of radiotherapy, although it is reported that cases can develop after a long period of latency. Factors such as dosage and irradiation technique employed, tumour invasion into the laryngeal cartilage, infection, continued smoking, trauma and general vascular condition of the patient have been considered to increase the rate and degree of development of radionecrosis. We report an unusual case of laryngeal radionecrosis in a patient with hypertension, hyperlipidaemia, diabetes and a history of cigarette smoking, which developed 25 years after radiotherapy for laryngeal carcinoma. His systemic illnesses and continued smoking were speculated to have contributed to the progress of the radionecrosis, suggesting that cessation of smoking and control of arteriosclerotic diseases should be considered to decrease its incidence.
An amorphous p-type conductive oxide semiconductor was created based on a mother crystalline material, a p-type conductive ZnRh2O4 spinel. The amorphous film of ZnRh2O4 was deposited by an rf sputtering method. Seebeck coefficient was positive, +78 μVK-1, indicating that major carrier is a positive hole. A moderate electrical conductivity (2 S cm-1 at room temperature) for a p-type semiconductor was observed. Optical band gap was estimated to be 2.1 eV. P-n junction diodes with a structure of Au / a-ZnRh2O4 / a-InGaZnO4 / ITO fabricated on glass substrates, operated with a good rectifying characteristics, a rectification current ratio at ± 5V of ∼103. The threshold voltage was 2.1 eV, which corresponds to the band gap energy of the amorphous ZnRh2O4. This is the first discovery of a p-type amorphous oxide and the demonstration of p-n junction all composed of amorphous oxide semiconductors.