We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Heath forests, or known locally as kerangas, in Indonesia and Malaysia form a distinct and understudied ecoregion. We document the distribution and ecological significance of the largest extent of kerangas in Kalimantan, Indonesian Borneo. We mapped 16,586 km2 of kerangas to the nearest one square kilometre across Kalimantan, showing a significant reduction from previous estimates. About 19% of this area exists as a poorly documented mosaic landscape in Central Kalimantan’s Rungan-Kahayan region. Here, peat-based forests transition to heath and dipterocarp forests, making it difficult to reliably classify these forests for conservation planning. Using remote sensing and tree plot data, we identified three forest types—kerangas, low pole, and mixed swamp. Vegetation structure is influenced by soil, topography, and hydrology, while peat depth and elevation affect species diversity. Our findings indicate that these forests are dynamic ecosystems with diverse vegetation communities adapted to peat as well as sandy soils. Lowland heath forests in Rungan-Kahayan exhibits higher tree densities compared to other Bornean heath forests, reflecting unique ecological adaptations to challenging environments. Despite covering just 3% of Kalimantan’s forest area, these ecosystems remain largely unprotected, facing threats from land conversion and fire. Our study highlights the ecological complexity of kerangas and underscores the urgent need for targeted conservation and further research on these forests.
Root research on field-grown crops is hindered by the difficulty of estimating root biomass in soil. Root washing, the current standard method is laborious and expensive. Biochemical methods to quantify root biomass in soil, targeting species-specific DNA, have potential as a more efficient assay. We combined an efficient DNA extraction method, designed specifically to extract DNA from soil, with well-established quantitative PCR methods to estimate the root biomass of 22 wheat varieties grown in field trials over two seasons. We also developed an assay for estimating root biomass for black-grass, a common weed of wheat cultivation.
Methods
Two robust qPCR assays were developed to estimate the quantity of plant root DNA in soil samples, one specific to wheat and barley, and a second specific to black-grass.
Results
The DNA qPCR method was comparable, with high correlations, with the results of root washing from soil cores taken from winter wheat field trials. The DNA qPCR assay showed both variety and depth as significant factors in the distribution of root biomass in replicated field trials.
Conclusions
The results suggest that these DNA qPCR assays are a useful, high-throughput tool for investigating the genetic basis of wheat root biomass distribution in field-grown crops, and the impact of black-grass root systems on crop production.
Precision or “Personalized Medicine” and “Big Data” are growing trends in the biomedical research community and highlight an increased focus on access to larger datasets to effectively explore disease processes at the molecular level versus the previously common one-size-fits all approach. This focus necessitated a local transition from independent lab and siloed projects to a single software application utilizing a common ontology to create access to data from multiple repositories. Use of a common system has allowed for increased ease of collaboration and access to quality biospecimens that are extensively annotated with clinical, molecular, and patient associated data. The software needed to function at an enterprise level while continuing to allow investigators the autonomy and security access they desire. To identify a solution, a working group comprised of representation from independent repositories and areas of research focus across departments was established and responsible for review and implementation of an enterprise-wide biospecimen management system. Central to this process was the creation of a unified vocabulary across all repositories, including consensus around source of truth, standardized field definitions, and shared terminology.
Managing clinical trials is a complex process requiring careful integration of human, technology, compliance, and operations for success. We collaborated with experts to develop a multi-axial Clinical Trials Management Ecosystem (CTME) maturity model (MM) to help institutions identify best practices for CTME capabilities.
Methods:
A working group of research informaticists was established. An online session on maturity models was hosted, followed by a review of the candidate domain axes and finalization of the axes. Next, maturity level attributes were defined for min/max levels (level 1 and level 5) for each axis of the CTME MM, followed by the intermediate levels. A REDCap survey comprising the model’s statements was then created, and a subset of working group members tested the model by completing it at their respective institutions. The finalized survey was distributed to all working group members.
Results:
We developed a CTME MM comprising five maturity levels across 11 axes: study management, regulatory and audit management, financial management, investigational product management, subject identification and recruitment, subject management, data, reporting analytics & dashboard, system integration and interfaces, staff training & personnel management, and organizational maturity and culture. Informaticists at 22 Clinical and Translational Science Award hubs and one other organization self-assessed their institutional CTME maturity. Respondents reported relatively high maturity for study management and investigational product management. The reporting analytics & dashboard axis was the least mature.
Conclusion:
The CTME MM provides a framework to research organizations to evaluate their current clinical trials management maturity across 11 axes and identify areas for future growth.
An investigation into an outbreak of Salmonella Newport infections in Canada was initiated in July 2020. Cases were identified across several provinces through whole-genome sequencing (WGS). Exposure data were gathered through case interviews. Traceback investigations were conducted using receipts, invoices, import documentation, and menus. A total of 515 cases were identified in seven provinces, related by 0–6 whole-genome multi-locus sequence typing (wgMLST) allele differences. The median age of cases was 40 (range 1–100), 54% were female, 19% were hospitalized, and three deaths were reported. Forty-eight location-specific case sub-clusters were identified in restaurants, grocery stores, and congregate living facilities. Of the 414 cases with exposure information available, 71% (295) had reported eating onions the week prior to becoming ill, and 80% of those cases who reported eating onions, reported red onion specifically. The traceback investigation identified red onions from Grower A in California, USA, as the likely source of the outbreak, and the first of many food recall warnings was issued on 30 July 2020. Salmonella was not detected in any tested food or environmental samples. This paper summarizes the collaborative efforts undertaken to investigate and control the largest Salmonella outbreak in Canada in over 20 years.
Although behavioral mechanisms in the association among depression, anxiety, and cancer are plausible, few studies have empirically studied mediation by health behaviors. We aimed to examine the mediating role of several health behaviors in the associations among depression, anxiety, and the incidence of various cancer types (overall, breast, prostate, lung, colorectal, smoking-related, and alcohol-related cancers).
Methods
Two-stage individual participant data meta-analyses were performed based on 18 cohorts within the Psychosocial Factors and Cancer Incidence consortium that had a measure of depression or anxiety (N = 319 613, cancer incidence = 25 803). Health behaviors included smoking, physical inactivity, alcohol use, body mass index (BMI), sedentary behavior, and sleep duration and quality. In stage one, path-specific regression estimates were obtained in each cohort. In stage two, cohort-specific estimates were pooled using random-effects multivariate meta-analysis, and natural indirect effects (i.e. mediating effects) were calculated as hazard ratios (HRs).
Results
Smoking (HRs range 1.04–1.10) and physical inactivity (HRs range 1.01–1.02) significantly mediated the associations among depression, anxiety, and lung cancer. Smoking was also a mediator for smoking-related cancers (HRs range 1.03–1.06). There was mediation by health behaviors, especially smoking, physical inactivity, alcohol use, and a higher BMI, in the associations among depression, anxiety, and overall cancer or other types of cancer, but effects were small (HRs generally below 1.01).
Conclusions
Smoking constitutes a mediating pathway linking depression and anxiety to lung cancer and smoking-related cancers. Our findings underline the importance of smoking cessation interventions for persons with depression or anxiety.
OBJECTIVES/GOALS: Specialty care for asthmatic children should prevent adverse asthma outcomes. This study of children receiving care in the Arkansas Medicaid program used a comparative effectiveness research design to test whether allergy specialty care was associated with reduced adverse asthma outcomes. METHODS/STUDY POPULATION: Using the Arkansas All Payer Claims Database we studied Medicaid-enrolled children with asthma using a propensity score greedy nearest neighbor one-to-one matching algorithm. We matched children with (treatment) and without (comparison) an allergy specialist visit in 2018. The propensity score model included 26 covariates (demographic, clinical, and social determinants of health). Multivariable adjusted logistic regression was used to estimate adverse asthma events (AAE: emergency department visit or inpatient hospitalization with a primary or secondary diagnosis of asthma in 2019). RESULTS/ANTICIPATED RESULTS: We identified 3,031 children with an allergy specialist visit in 2018, and successfully propensity-score matched 2,910 of the treatment group with a non-allergy specialist visit comparison group. The rate of AAEs in 2019 was 9.5% for individuals with an allergy specialist visit versus 10.1% among those without a specialist visit (p=0.450). The adjusted regression analysis showed 20.3% lower rates of AAEs (aOR: 0.797; 95% Confidence Interval: 0.650, 0.977; p=0.029) in 2019 for children with an allergy specialist visit in 2018 compared to those that did not. DISCUSSION/SIGNIFICANCE: Utilizing allergy specialist care was associated with better asthma outcomes in our statewide study of Arkansas Medicaid-enrolled children with asthma. Asthma quality metrics based on guideline-based recommendations for allergy specialist care should be considered in population health management programs.
Montmorillonites saturated with small quaternary alkylammonium ions such as tetramethyl-ammonium (TMA) or trimethylphenylammonium (TMPA) are excellent sorbents for aromatic pollutants. In some cases, water inhibits arene sorption, but the inhibition mechanism is not understood completely. The objectives of this study were to determine whether arenes interact with adsorbed TMA and TMPA ions and/or with siloxane surfaces, and how water affects these interactions. We reacted benzene and ethylbenzene vapors with normal- and reduced-charge TMA- and TMPA-montmorillonite films at several relative humidities, and obtained infrared spectra of the resulting sorbate-clay complexes. Arene sorption caused the methyl asymmetric deformation vibrations adsorbed TMA and TMPA to shift to lower wave-number, whereas water sorption caused shifts to higher wavenumber. In the absence of water, benzene and ethylbenzene adsorbed on the siloxane surface as well as interacted directly with TMA and TMPA ions. The proportion of TMA and TMPA ions that interacted with benzene and ethylbenzene was greater for reduced-charge than normal-charge montmorillonite. Comparison of the HOH deformation and cation methyl asymmetric deformation vibrations indicated that both benzene and ethylbenzene inhibited water sorption substantially, and that water more readily displaced benzene and ethylbenzene from TMA and TMPA ions than from siloxane surfaces. Water inhibited arene sorption mainly by hydrating exchangeable cations, thereby obscuring siloxane surfaces adjacent to adsorbed TMA and TMPA ions and decreasing the average pore dimensions. These results indicate that in the presence of bulk water, arene adsorption likely occurs primarily on the siloxane surface.
Sorption and transformation of 1-naphthol by a K-smectite (K-SWy-2) were studied using batch sorption isotherms, Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The sorbents included three preparations of the reference smectite clay (SWy-2): (1) whole clay containing naturally occurring carbonate impurities, (2) SWy-2 with the removal of carbonate impurities, and (3) the carbonate-free SWy-2 fraction amended with calcite. For the whole clay and carbonate-free clay amended with calcite, >80% of added 1-naphthol disappeared from aqueous solution within 24 h, corresponding to a sorbed concentration of ≥2 mg/g of clay. In contrast, only 35% of the added 1-naphthol disappeared from solution in the carbonate-free clay after 24 h of exposure. For the clays from the three preparations in this study, <1% of sorbed 1-naphthol could be recovered by methanol extraction from the clays. The XRD data suggested that 1-naphthol was intercalated in the smectite, but was not conclusive because the 1-naphthol sorption range (1.5–2.8 mg/g of clay) in this study had relatively minor effects on the XRD patterns. The FTIR spectra of sorbed 1-naphthol-clay complexes demonstrated structural Fe3+ reduction. The spectra also showed evidence of the transformation of 1-naphthol. It suggests that reduction of structural Fe3+ may be coupled to oxidation/polymerization of 1-naphthol. Further transformation of oxidized 1-naphthol, such as by oxidative coupling reactions, is implicated by formation of a dark gray color on the clay and the inability to extract sorbed 1-naphthol.
The influence of clay preparation procedure on sorption and hydrolysis of carbaryl (1-naphthyl, A-methyl carbamate) by the reference smectite SWy-2 was examined. For research purposes, reference clays are sometimes used without purification, or more commonly, the <2 μm size fraction is obtained by gravity sedimentation or low-speed centrifugation. We determined that these common methods did not remove all the inorganic carbonate impurities present in SWy-2, and that these impurities caused alkaline conditions in aqueous clay suspensions leading to the alkaline hydrolysis of carbaryl to 1-naphthol. The hydrolytic activity of homoionic K-SWy-2 disappeared once carbonates were eliminated. Two methods were evaluated for preparing K-SWy-2 devoid of inorganic carbonates. In Method A, inorganic carbonates were first removed by incremental additions of a 0.5 M sodium acetate buffer (pH 5.0) until the clay suspension reached pH 6.8, followed by low-speed centrifugation to obtain the <2 μm size fraction; in Method B, the order of these steps was reversed. Carbaryl hydrolysis was used as a probe to determine the effectiveness of the two methods in terms of the removal of carbonate accessory minerals. Homoionic K-SWy-2 obtained by Methods A and B produced near neutral pH when suspended in water and hydrolysis of carbaryl in these suspensions was not evident. In this regard, both clay preparation methods were acceptable. However, there were procedural advantages with Method B, which is therefore recommended for the partial purification of reference clays, as detailed in this paper.
The adsorption of two dinitrophenol herbicides, 4,6-dinitro-o-cresol (DNOC) and 4,6-dinitro-o-sec-butyl phenol (dinoseb), by two reference smectite clays (SWy-2 and SAz-1) was evaluated using a combination of sorption isotherms, Fourier transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and molecular dynamic simulations. Clays were subject to saturation with various cations, and charge reduction. The DNOC adsorption decreased with increasing pH indicating that DNOC was primarily adsorbed as the neutral species. The FTIR spectra of DNOC-clay films showed that DNOC molecules are oriented parallel to the clay surface. Interlayer cations have a strong effect on adsorption depending largely on their hydration energies. Weakly hydrated cations, e.g. K+ and Cs+, resulted in greater sorption compared to more strongly hydrated cations such as Na+ or Ca2+. Lower hydration favors direct interactions of exchangeable cations with -NO2 groups of DNOC and manifests optimal interlayer spacings for adsorption. In the presence of sorbed DNOC, an interlayer spacing for K-SWy-2 of between 12 and 12.5 Å was maintained regardless of the presence of water. This d-spacing allowed DNOC molecules to interact simultaneously with the opposing clay layers thus minimizing contact of DNOC with water. The charge density of clays also affected sorption by controlling the size of adsorption domains. Accordingly, DNOC adsorption by low-charge clay (K-SWy-2) was much higher than by high-charge clay (K-SAz-1) and Li-charge reduction greatly enhanced dinoseb adsorption by K-SAz-1. Steric constraints were also evident from the observation that adsorption of DNOC, which contains a methyl substituent, was much greater than dinoseb, which contains a bulkier isobutyl group. Adsorption of DNOC by K-SAz-1 was not affected in the presence of dinoseb, whereas dinoseb adsorption was greatly reduced in the presence of DNOC.
Nitroaromatic compounds (NACs) are components of munitions commonly found as soil contaminants at military training sites and elsewhere. These compounds pose possible threats to human health and ecological systems. Recent studies indicate that these compounds are strongly retained by smectite clays. The adsorption mechanisms are not fully reconciled, but it is known that the type of exchangeable cation strongly affects NAC affinity for smectites. This study examined the sorption of 1,3-dinitrobenzene, 2,4-dinitrotoluene and naphthalene from water by a smectite clay (SWy-2) saturated with ammonium, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA). In all cases, we observed greater sorption of 2,4-dinitrotoluene compared with 1,3-dinitrobenzene. The sorption isotherms for 2,4-dinitrotoluene and 1,3-dinitrobenzene displayed a concave-downward curve for NH4-SWy-2 and TMA-SWy-2, whereas the isotherms for sorption of HDTMA-SWy-2 and TMPA-SWy-2 were essentially linear. The magnitude of sorption followed the order: NH4-SWy-2 > TMA-SWy-2 > TMPA-SWy-2 > HDTMA-SWy-2 for both compounds. The greater affinity of NACs for NH4- and TMA-SWy-2 is due in part to complex formation between the exchangeable cation and −NO2 groups. These clays also provide near optimal interlayer distances that approximate the molecular thickness of NACs hence promoting the simultaneous interaction of the planar aromatic rings with opposing siloxane surfaces and solute dehydration. Both processes are energetically favorable. In HDTMA-SWy-2, sorption of all solutes is via a partition-dominated process. Solute competition (diminished uptake of one solute in the presence of a second) was observed for TMA-SWy-2 but not HDTMA-SWy-2. This is consistent with an adsorptive mechanism for TMA-SWy-2 and a partitioning mechanism for HDTMA-SWy-2. This study demonstrates that the dominant molecular mechanism of NAC sorption by smectite changes fundamentally from complexation between −NO2 groups and the exchangeable cation (viz. NH4 and TMA) to partitioning for a systematic series of ammonium and quaternary ammonium cations in which the locus of positive charge (the central N atom) is progressively shielded by organic moieties of increasing size.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
To conduct feasibility and cost analysis of portable MRI implementation in a remote setting where MRI access is otherwise unavailable.
Methods:
Portable MRI (ultra-low field, 0.064T) was installed in Weeneebayko General Hospital, Moose Factory, Ontario. Adult patients, presenting with any indication for neuroimaging, were eligible for study inclusion. Scanning period was from November 14, 2021, to September 6, 2022. Images were sent via a secure PACS network for Neuroradiologist interpretation, available 24/7. Clinical indications, image quality, and report turnaround time were recorded. A cost analysis was conducted from a healthcare system’s perspective in 2022 Canadian dollars, comparing cost of portable MRI implementation to transporting patients to a center with fixed MRI.
Results:
Portable MRI was successfully implemented in a remote Canadian location. Twenty-five patients received a portable MRI scan. All studies were of diagnostic quality. No clinically significant pathologies were identified on any of the studies. However, based on clinical presentation and limitations of portable MRI resolution, it is estimated that 11 (44%) of patients would require transfer to a center with fixed MRI for further imaging workup. Cost savings were $854,841 based on 50 patients receiving portable MRI over 1 year. Five-year budget impact analysis showed nearly $8 million dollars saved.
Conclusions:
Portable MRI implementation in a remote setting is feasible, with significant cost savings compared to fixed MRI. This study may serve as a model to democratize MRI access, offer timely care and improved triaging in remote areas where conventional MRI is unavailable.
The swede midge, Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), is invasive to North America, where it was first reported in Ontario, Canada. It is now established in eastern Canada and from eastern Minnesota in the Midwest to the northeastern seaboard of the United States of America. Swede midge is a serious pest of brassicaceous plants, including vegetable and oilseed crops. To ensure its early detection in the Northern Great Plains, a monitoring programme was established using pheromone traps located primarily along the edges of canola fields from North Dakota, United States of America, northwest to the Peace River region, in Alberta and British Columbia, Canada. In North Dakota, 117 trap sites were monitored between 2015 and 2021. In western Canada, monitoring occurred on a small scale from 2006 to 2011, and 521 trap sites were monitored from 2013 to 2021. Swede midge was not detected in canola grown in the Northern Great Plains between 2006 and 2021. Partners in North Dakota and western Canada intend to maintain the monitoring programme to support early detection of swede midge if it does continue to disperse northwestwards. The monitoring programme contributes to outreach activities and fosters farmer and agronomist participation in pest management (i.e., community science) in the Northern Great Plains.
We summarize what we assess as the past year's most important findings within climate change research: limits to adaptation, vulnerability hotspots, new threats coming from the climate–health nexus, climate (im)mobility and security, sustainable practices for land use and finance, losses and damages, inclusive societal climate decisions and ways to overcome structural barriers to accelerate mitigation and limit global warming to below 2°C.
Technical summary
We synthesize 10 topics within climate research where there have been significant advances or emerging scientific consensus since January 2021. The selection of these insights was based on input from an international open call with broad disciplinary scope. Findings concern: (1) new aspects of soft and hard limits to adaptation; (2) the emergence of regional vulnerability hotspots from climate impacts and human vulnerability; (3) new threats on the climate–health horizon – some involving plants and animals; (4) climate (im)mobility and the need for anticipatory action; (5) security and climate; (6) sustainable land management as a prerequisite to land-based solutions; (7) sustainable finance practices in the private sector and the need for political guidance; (8) the urgent planetary imperative for addressing losses and damages; (9) inclusive societal choices for climate-resilient development and (10) how to overcome barriers to accelerate mitigation and limit global warming to below 2°C.
Social media summary
Science has evidence on barriers to mitigation and how to overcome them to avoid limits to adaptation across multiple fields.
To reappraise pre-exposure prophylaxis (PrEP) eligibility criteria towards the men who have sex with men (MSM) with highest HIV-risk, we assessed PrEP need (i.e. HIV-risk) using Amsterdam Cohort Studies data from 2011–2017 for all non-PrEP using MSM. Outcomes were incident HIV-infection and newly-diagnosed anal STI. Determinants were current PrEP eligibility criteria (anal STI and condomless sex (CAS)) and additional determinants (age, education, group sex, alcohol use during sex and chemsex). We used targeted maximum likelihood estimation (TMLE) to estimate the relative risk (RR) and 95% confidence intervals (CI) of determinants on outcomes, and calculated population attributable fractions (PAFs) with 95% CI using RRs from TMLE. Among 810 included MSM, 22 HIV-infections and 436 anal STIs (n = 229) were diagnosed during follow-up. Chemsex (RR = 5.8 (95% CI 2.0–17.0); PAF = 55.3% (95% CI 43.3–83.4)), CAS with a casual partner (RR = 3.3 (95% CI 1.3–8.7); PAF = 38.0% (95% CI 18.3–93.6)) and anal STI (RR = 5.3 (95% CI 1.7–16.7); PAF = 22.0 (95% CI −16.8 to 100.0)) were significantly (P < 0.05) associated with and had highest attributable risk fractions for HIV. Chemsex (RR = 2.0 (95% CI 1.6–2.4); PAF = 19.5 (95% CI 10.6–30.6)) and CAS with a casual partner (RR = 2.5 (95% CI 2.0–3.0); PAF = 28.0 (95% CI 21.0–36.4)) were also significantly associated with anal STI, as was younger age (16–34/≥35; RR = 1.7 (95% CI 1.4–2.1); PAF = 15.5 (95% CI 6.4–27.6)) and group sex (RR = 1.3 (95% CI 1.1–1.6); PAF = 9.0 (95% CI −2.3 to 23.7)). Chemsex should be an additional PrEP eligibility criterion.
The past 50 yr of advances in weed recognition technologies have poised site-specific weed control (SSWC) on the cusp of requisite performance for large-scale production systems. The technology offers improved management of diverse weed morphology over highly variable background environments. SSWC enables the use of nonselective weed control options, such as lasers and electrical weeding, as feasible in-crop selective alternatives to herbicides by targeting individual weeds. This review looks at the progress made over this half-century of research and its implications for future weed recognition and control efforts; summarizing advances in computer vision techniques and the most recent deep convolutional neural network (CNN) approaches to weed recognition. The first use of CNNs for plant identification in 2015 began an era of rapid improvement in algorithm performance on larger and more diverse datasets. These performance gains and subsequent research have shown that the variability of large-scale cropping systems is best managed by deep learning for in-crop weed recognition. The benefits of deep learning and improved accessibility to open-source software and hardware tools has been evident in the adoption of these tools by weed researchers and the increased popularity of CNN-based weed recognition research. The field of machine learning holds substantial promise for weed control, especially the implementation of truly integrated weed management strategies. Whereas previous approaches sought to reduce environmental variability or manage it with advanced algorithms, research in deep learning architectures suggests that large-scale, multi-modal approaches are the future for weed recognition.
The literature on the internalized stigma (or self-stigma) of mental illness has been expanding rapidly. We review the key findings of two meta-analyses of the correlates and consequences that occurred a decade apart (Livingston & Boyd, 2010, Del Rosal et al., 2020), showing that internalized stigma is related to less self-esteem, quality of life, and hope; and related to greater experienced stigma, perceived stigma, and symptom severity. For empowerment, the relationship of internalized stigma was somewhat weaker in 2020 than in 2010. Neither found significant relationships with sociodemographic variables. Although more longitudinal studies are needed to better test the causal direction of these relationships, the overall findings are consistent with the idea that internalized stigma impedes recovery and adds to the burden of mental illness. While, more work needs to be done to understand the effects of internalized stigma on people with a variety of intersectional identities. we briefly describe the literature on a few contrasting types of marginalized identities: gender (female and transgender), race/ethnicity (African Americans), and profession (mental health professionals with a lived experience of mental illness). These summaries highlight that the consequences of internalized stigma may vary across intersectional identities. We conclude with suggestions for future research.