We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
The American College of Cardiology has published clinical practice algorithms for common congenital heart lesions, including atrial septal defect, patent ductus arteriosus, valvar pulmonary stenosis, aortic coarctation, and ventricular septal defect. The purpose of this study was to define the current practice patterns in the management of these lesions and describe the impact of departure from these recommendations.
Methods:
This was a retrospective analysis of the most recent 100 outpatient appointments for each lesion at our centre. Electronic medical records were queried to determine whether the scheduling, testing, and follow-up plan for each appointment were consistent with the published algorithms.
Results:
A total of 500 visits were evaluated (150 new visits; 350 follow-up visits); 32% (n = 162) of encounters did not receive appropriate testing, 37% (n = 186) departed from recommended follow-up plans, and of the 350 follow-up visits, 45% (n = 156) departed from scheduling guidelines. Impact of these departures was quantified in reference to over- or under-expenditure of clinical resources. Of the aberrant testing encounters, 60% (n = 97) saw too few tests. Of the deviant follow-up plans created, 74% (n = 138) brought patients back to clinic too soon.
Conclusion:
This study explores the deviation between current practice patterns and published clinical care guidelines. There is considerable variation across domain of analysis, diagnosis, and encounter type, resulting in uneven resource utilisation. Standardisation of care in these areas will improve utilisation and can be a starting point for improvement work.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
From early on, infants show a preference for infant-directed speech (IDS) over adult-directed speech (ADS), and exposure to IDS has been correlated with language outcome measures such as vocabulary. The present multi-laboratory study explores this issue by investigating whether there is a link between early preference for IDS and later vocabulary size. Infants’ preference for IDS was tested as part of the ManyBabies 1 project, and follow-up CDI data were collected from a subsample of this dataset at 18 and 24 months. A total of 341 (18 months) and 327 (24 months) infants were tested across 21 laboratories. In neither preregistered analyses with North American and UK English, nor exploratory analyses with a larger sample did we find evidence for a relation between IDS preference and later vocabulary. We discuss implications of this finding in light of recent work suggesting that IDS preference measured in the laboratory has low test-retest reliability.
We examined whether cannabis use contributes to the increased risk of psychotic disorder for non-western minorities in Europe.
Methods
We used data from the EU-GEI study (collected at sites in Spain, Italy, France, the United Kingdom, and the Netherlands) on 825 first-episode patients and 1026 controls. We estimated the odds ratio (OR) of psychotic disorder for several groups of migrants compared with the local reference population, without and with adjustment for measures of cannabis use.
Results
The OR of psychotic disorder for non-western minorities, adjusted for age, sex, and recruitment area, was 1.80 (95% CI 1.39–2.33). Further adjustment of this OR for frequency of cannabis use had a minimal effect: OR = 1.81 (95% CI 1.38–2.37). The same applied to adjustment for frequency of use of high-potency cannabis. Likewise, adjustments of ORs for most sub-groups of non-western countries had a minimal effect. There were two exceptions. For the Black Caribbean group in London, after adjustment for frequency of use of high-potency cannabis the OR decreased from 2.45 (95% CI 1.25–4.79) to 1.61 (95% CI 0.74–3.51). Similarly, the OR for Surinamese and Dutch Antillean individuals in Amsterdam decreased after adjustment for daily use: from 2.57 (95% CI 1.07–6.15) to 1.67 (95% CI 0.62–4.53).
Conclusions
The contribution of cannabis use to the excess risk of psychotic disorder for non-western minorities was small. However, some evidence of an effect was found for people of Black Caribbean heritage in London and for those of Surinamese and Dutch Antillean heritage in Amsterdam.
Australian Aboriginal and Torres Strait Islander peoples are disproportionately affected by diet-related disease such as type 2 diabetes, the rate of which is 20 fold higher than that of non-Indigenous young Australians(1). Before colonisation, Gomeroi and other First Nations people harvested, threshed and ground native grass seeds with water into a paste before cooking(2). The introduction of white refined flour has meant that time-consuming grass seed processing has mainly ceased, and native grains are no longer eaten habitually. The aim of this study was to determine the effect of 10% incorporation of two native grain flours on postprandial blood glucose response and Glycemic Index (GI). Five male and five female subjects, with a mean age of 30 ± 0.9 and BMI of 21.6 ± 0.4 and normoglycemic, participated in GI testing of three flour + water pancake compositions matched for available carbohydrate: 100% wheat (Wheat) and 90% wheat:10% native grains (Native_a and Native_b). Effect on satiety was determined using subjective ratings of hunger/fullness over the time course of the GI testing. In comparison to the plain flour pancake, replacing 10% plain wheat flour with Native_b flour significantly reduced the GI by 28.8% from 73 ± 5 to 48 ± 5, having a profound effect on postprandial blood glucose levels in 9 of 10 subjects (p<0.05, paired t-test). The GI of 10% Native_a flour pancake was not different from 100% wheat flour pancake (75 ± 5). Satiety tended to be greater when native grains were incorporated but this study was not powered to detect effect on satiety. In conclusion, replacing only 10% of plain wheat flour with Native_b flour was sufficient to significantly reduce the blood glycemic response to the pancake. This replacement could be easily implemented for prevention and treatment of type 2 diabetes. For Aboriginal people with access to grain Country, the nutritional health benefits associated with eating native grains, as well as the cultural benefits of caring for Country, will have a direct transformational impact on local communities. Our vision is to revitalise Gomeroi grains and to guide a sustainable Indigenous-led industry to heal Country and people through co-designed research.
We performed a literature review to describe the risk of surgical-site infection (SSI) in minimally invasive surgery (MIS) compared to standard open surgery. Most studies reported decreased SSI rates among patients undergoing MIS compared to open procedures. However, many were observational studies and may have been affected by selection bias. MIS is associated with reduced risk of surgical-site infection compared to standard open surgery and should be considered when feasible.
A common assumption to maximise cognitive training outcomes is that training tasks should be adaptive, with difficulty adjusted to the individual’s performance. This has only been tested once in adults (von Bastian & Eschen, 2016). We aimed to examine children’s outcomes of working memory training using adaptive, self-select and stepwise approaches to setting the difficulty of training tasks compared to an active control condition.
Participants and Methods:
In a randomised controlled trial (ACTRN 12621000990820), children in Grades 2-5 (7 to 11 years) were allocated to one of four conditions: adaptive working memory training, self-select working memory training, stepwise working memory training, or active control. An experimental intervention embedded in Minecraft was developed for teachers to deliver in the classroom over two weeks (10 x 20-minute sessions). The working memory training comprised two training tasks with processing demands similar to daily activities: backward span with digits and following instructions with objects. The control condition comprised creative building tasks. As part of a larger protocol, children completed at baseline and immediately post-intervention working memory measures similar to the training activities (primary outcome): backward span digits and letters versions, following instructions objects and letters versions. Primary analyses were intention-to-treat. Secondary analyses included only children who completed 10 sessions.
Results:
Of 204 children recruited into the study, 203 were randomised, with 95% retention at post-intervention. 76% of children completed all 10 training sessions. Comparisons between each working memory training condition and the active control on working memory measures were non-significant (f2 = 0.00), with one exception. Children in the self-select condition on average performed 1-point better than the controls on the following instructions objects measure (p = .02, f2 = 0.03). A pattern emerged that the self-select condition performed better on most measures.
Conclusions:
We found little evidence that an adaptive approach to setting the difficulty of training tasks maximises training outcomes for children. Findings suggest that working memory outcomes following training are limited and are not modulated by the approach to setting the difficulty of training tasks. This is consistent with findings from von Bastian & Eschen (2016), who also observed that the self-select condition (and not the adaptive condition) showed a slightly larger change in working memory performance following training than the control. It is helpful for clinicians to be aware that adaptive working memory training programs might not be superior in improving children’s working memory, and the benefits of programs are limited.
We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode ($\sim$4 min negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA ($\sim$$1\,000\,\textrm{deg}^2$ at 120 MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on $\sim$$5-22$ BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
Gene x environment (G×E) interactions, i.e. genetic modulation of the sensitivity to environmental factors and/or environmental control of the gene expression, have not been reliably established regarding aetiology of psychotic disorders. Moreover, recent studies have shown associations between the polygenic risk scores for schizophrenia (PRS-SZ) and some risk factors of psychotic disorders, challenging the traditional gene v. environment dichotomy. In the present article, we studied the role of GxE interaction between psychosocial stressors (childhood trauma, stressful life-events, self-reported discrimination experiences and low social capital) and the PRS-SZ on subclinical psychosis in a population-based sample.
Methods
Data were drawn from the EUropean network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) study, in which subjects without psychotic disorders were included in six countries. The sample was restricted to European descendant subjects (n = 706). Subclinical dimensions of psychosis (positive, negative, and depressive) were measured by the Community Assessment of Psychic Experiences (CAPE) scale. Associations between the PRS-SZ and the psychosocial stressors were tested. For each dimension, the interactions between genes and environment were assessed using linear models and comparing explained variances of ‘Genetic’ models (solely fitted with PRS-SZ), ‘Environmental’ models (solely fitted with each environmental stressor), ‘Independent’ models (with PRS-SZ and each environmental factor), and ‘Interaction’ models (Independent models plus an interaction term between the PRS-SZ and each environmental factor). Likelihood ration tests (LRT) compared the fit of the different models.
Results
There were no genes-environment associations. PRS-SZ was associated with positive dimensions (β = 0.092, R2 = 7.50%), and most psychosocial stressors were associated with all three subclinical psychotic dimensions (except social capital and positive dimension). Concerning the positive dimension, Independent models fitted better than Environmental and Genetic models. No significant GxE interaction was observed for any dimension.
Conclusions
This study in subjects without psychotic disorders suggests that (i) the aetiological continuum hypothesis could concern particularly the positive dimension of subclinical psychosis, (ii) genetic and environmental factors have independent effects on the level of this positive dimension, (iii) and that interactions between genetic and individual environmental factors could not be identified in this sample.
This article is a clinical guide which discusses the “state-of-the-art” usage of the classic monoamine oxidase inhibitor (MAOI) antidepressants (phenelzine, tranylcypromine, and isocarboxazid) in modern psychiatric practice. The guide is for all clinicians, including those who may not be experienced MAOI prescribers. It discusses indications, drug-drug interactions, side-effect management, and the safety of various augmentation strategies. There is a clear and broad consensus (more than 70 international expert endorsers), based on 6 decades of experience, for the recommendations herein exposited. They are based on empirical evidence and expert opinion—this guide is presented as a new specialist-consensus standard. The guide provides practical clinical advice, and is the basis for the rational use of these drugs, particularly because it improves and updates knowledge, and corrects the various misconceptions that have hitherto been prominent in the literature, partly due to insufficient knowledge of pharmacology. The guide suggests that MAOIs should always be considered in cases of treatment-resistant depression (including those melancholic in nature), and prior to electroconvulsive therapy—while taking into account of patient preference. In selected cases, they may be considered earlier in the treatment algorithm than has previously been customary, and should not be regarded as drugs of last resort; they may prove decisively effective when many other treatments have failed. The guide clarifies key points on the concomitant use of incorrectly proscribed drugs such as methylphenidate and some tricyclic antidepressants. It also illustrates the straightforward “bridging” methods that may be used to transition simply and safely from other antidepressants to MAOIs.
We present the most sensitive and detailed view of the neutral hydrogen (${\rm H\small I}$) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal ${\rm H\small I}$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ($1.6\,\mathrm{mJy\ beam}^{-1}$) $\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$ spectral channel with an angular resolution of $30^{\prime\prime}$ (${\sim}10\,\mathrm{pc}$). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire ${\sim}25\,\mathrm{deg}^2$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes ${\rm H\small I}$ test observations.
The combination of advances in knowledge, technology, changes in consumer preference and low cost of manufacturing is accelerating the next technology revolution in crop, livestock and fish production systems. This will have major implications for how, where and by whom food will be produced in the future. This next technology revolution could benefit the producer through substantial improvements in resource use and profitability, but also the environment through reduced externalities. The consumer will ultimately benefit through more nutritious, safe and affordable food diversity, which in turn will also contribute to the acceleration of the next technology. It will create new opportunities in achieving progress towards many of the Sustainable Development Goals, but it will require early recognition of trends and impact, public research and policy guidance to avoid negative trade-offs. Unfortunately, the quantitative predictability of future impacts will remain low and uncertain, while new chocks with unexpected consequences will continue to interrupt current and future outcomes. However, there is a continuing need for improving the predictability of shocks to future food systems especially for ex-ante assessment for policy and planning.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, with its impact on our way of life, is affecting our experiences and mental health. Notably, individuals with mental disorders have been reported to have a higher risk of contracting SARS-CoV-2. Personality traits could represent an important determinant of preventative health behaviour and, therefore, the risk of contracting the virus.
Aims
We examined overlapping genetic underpinnings between major psychiatric disorders, personality traits and susceptibility to SARS-CoV-2 infection.
Method
Linkage disequilibrium score regression was used to explore the genetic correlations of coronavirus disease 2019 (COVID-19) susceptibility with psychiatric disorders and personality traits based on data from the largest available respective genome-wide association studies (GWAS). In two cohorts (the PsyCourse (n = 1346) and the HeiDE (n = 3266) study), polygenic risk scores were used to analyse if a genetic association between, psychiatric disorders, personality traits and COVID-19 susceptibility exists in individual-level data.
Results
We observed no significant genetic correlations of COVID-19 susceptibility with psychiatric disorders. For personality traits, there was a significant genetic correlation for COVID-19 susceptibility with extraversion (P = 1.47 × 10−5; genetic correlation 0.284). Yet, this was not reflected in individual-level data from the PsyCourse and HeiDE studies.
Conclusions
We identified no significant correlation between genetic risk factors for severe psychiatric disorders and genetic risk for COVID-19 susceptibility. Among the personality traits, extraversion showed evidence for a positive genetic association with COVID-19 susceptibility, in one but not in another setting. Overall, these findings highlight a complex contribution of genetic and non-genetic components in the interaction between COVID-19 susceptibility and personality traits or mental disorders.