We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Studies indicate that gut microbiota is related to neurodevelopmental and behavioral outcomes. Accordingly, early gut microbiota composition (GMC) has been linked to child temperament, but research is still scarce. The aim of this study was to examine how early GMC at 2.5 months is associated with child negative and fear reactivity at 8 and 12 months since they are potentially important intermediate phenotypes of later child psychiatric disorders.
Methods:
Our study population was 330 infants enrolled in the longitudinal FinnBrain Birth Cohort Study. Gut microbiota composition was analyzed using stool sample 16s rRNA sequencing. Negative and fear reactivity were assessed using the Laboratory Temperament Assessment Battery (Lab-TAB) at child’s age of 8 months (n =150) and the Infant Behavior Questionnaire-Revised Short Form (IBQ-R SF) at child’s age of 12 months (n = 276).
Conclusions:
We found a positive association between alpha diversity and reported fear reactivity and differing microbial community composition based on negative reactivity for boys. Isobutyric acid correlated with observed negative reactivity, however, this association attenuated in the linear model. Several genera were associated with the selected infant temperament traits. This study adds to the growing literature on links between infant gut microbiota and temperament informing future mechanistic studies.
The unsteady flow behaviour of two side-by-side rotors in ground proximity is experimentally investigated. The rotors induce a velocity distribution interacting with the ground causing the radial expansion of the rotor wakes. In between the rotors, an interaction of the two wakes takes place, resulting in an upward flow similar to a fountain. Two types of flow topologies are examined and correspond to two different stand-off heights between the rotors and the ground: the first one where the height of the fountain remains below the rotor disks, and a second one where it emerges above, being re-ingested. The fountain unsteadiness is shown to increase when re-ingestion takes place, determining a location switch from one rotor disk to the other, multiple times during acquisition. Consequently, variable inflow conditions are imposed on each of the two rotors. The fountain dynamics is observed at a frequency that is about two orders of magnitude lower than the blade passing frequency. The dominant characteristic time scale is linked to the flow recirculation path, relating this to system parameters of thrust and ground stand-off height. The flow field is analysed using proper orthogonal decomposition, in which coupled modes are identified. Results from the modal analysis are used to formulate a simple dynamic flow model of the re-ingestion switching cycle.
Prenatal adversity has been linked to later psychopathology. Yet, research on cumulative prenatal adversity, as well as its interaction with offspring genotype, on brain and behavioral development is scarce. With this study, we aimed to address this gap. In Finnish mother–infant dyads, we investigated the association of a cumulative prenatal adversity sum score (PRE-AS) with (a) child emotional and behavioral problems assessed with the Strengths and Difficulties Questionnaire at 4 and 5 years (N = 1568, 45.3% female), (b) infant amygdalar and hippocampal volumes (subsample N = 122), and (c) its moderation by a hippocampal-specific coexpression polygenic risk score based on the serotonin transporter (SLC6A4) gene. We found that higher PRE-AS was linked to greater child emotional and behavioral problems at both time points, with partly stronger associations in boys than in girls. Higher PRE-AS was associated with larger bilateral infant amygdalar volumes in girls compared to boys, while no associations were found for hippocampal volumes. Further, hyperactivity/inattention in 4-year-old girls was related to both genotype and PRE-AS, the latter partially mediated by right amygdalar volumes as preliminary evidence suggests. Our study is the first to demonstrate a dose-dependent sexually dimorphic relationship between cumulative prenatal adversity and infant amygdalar volumes.
Research on the longitudinal courses of child social–emotional symptoms and sleep during the COVID-19 pandemic within societies would be of key value for promoting child well-being in global crises. We characterized the course of children’s social–emotional and sleep symptoms before and throughout the pandemic in a Finnish longitudinal cohort of 1825 5- to 9-year-old children (46% girls) with four follow-up points during the pandemic from up to 695 participants (spring 2020–summer 2021). Second, we examined the role of parental distress and COVID-related stressful events in child symptoms. Child total and behavioral symptoms increased in spring 2020 but decreased thereafter and remained stable throughout the rest of the follow-up. Sleep symptoms decreased in spring 2020 and remained stable thereafter. Parental distress was linked with higher child social–emotional and sleep symptoms. The cross-sectional associations between COVID-related stressors and child symptoms were partially mediated by parental distress. The findings propose that children can be protected from the long-term adverse influences of the pandemic, and parental well-being likely plays a mediating role between pandemic-related stressors and child well-being. Further research focusing on the societal and resilience factors underlying family and child responses to the pandemic is warranted.
The corticogeniculate circuit is an evolutionarily conserved pathway linking the primary visual cortex with the visual thalamus in the feedback direction. While the corticogeniculate circuit is anatomically robust, the impact of corticogeniculate feedback on the visual response properties of visual thalamic neurons is subtle. Accordingly, discovering the function of corticogeniculate feedback in vision has been a particularly challenging task. In this review, the morphology, organization, physiology, and function of corticogeniculate feedback is compared across mammals commonly studied in visual neuroscience: primates, carnivores, rabbits, and rodents. Common structural and organizational motifs are present across species, including the organization of corticogeniculate feedback into parallel processing streams in highly visual mammals.
An outbreak of invasive Mycobacterium chimaera infections associated with heater-cooler devices (HCDs) has now affected patients in several countries on different continents. Clinical infections are characterized by delayed diagnosis, inadequate treatment response to antimicrobial agents, and poor prognosis. Outbreak investigators found M. chimaera in HCD water circuits and air samples while HCDs were running, suggesting that transmission from the HCD to the surgical site occurs via the airborne route. New HCDs at the manufacturing site were also contaminated with M. chimaera, and recent whole-genome sequencing data suggest a point source. Some guidance on screening for M. chimaera colonization in HCD water and exhaust air is available. In contrast, reliable disinfection procedures are not well described, and it is not yet known whether eradication of M. chimaera from a contaminated HCD can be achieved. Meanwhile, strict separation of the HCD from operating room air is necessary to ensure patient safety, and these efforts may require engineering solutions. While our understanding of the causes and the extent of the M. chimaera outbreak is growing, several aspects of patient management, device handling, and risk mitigation still require clarification.
Objectives: Parkinson’s disease (PD) results in a range of non-motor deficits that can affect mood, cognition, and language, and many of these issues are unresponsive to pharmacological intervention. Aerobic exercise can improve mood and cognition in healthy older adults, although only a few studies have examined exercise effects on these domains in PD. The current study assesses the effects of aerobic exercise on aspects of cognition, mood, and language production in people with PD. Methods: This study compares the effects of aerobic exercise to stretch-balance training and a no-contact control group in participants with idiopathic PD. The aerobic and stretch-balance groups trained three times a week for 16 weeks, while controls continued normal activities. Outcome measures included disease severity, mood, cognition (speed of processing, memory, and executive function), and language production (picture descriptions). Cognition and language were assessed in single and dual task conditions. Results: Depressive symptoms increased only in the control group (p<.02). Executive function improved in the aerobic exercise group only in the single task (p=.007) and declined in controls in the dual task. Completeness of picture descriptions improved significantly more in the aerobic group than in the stretch-balance group (p<.02). Conclusions: Aerobic exercise is a viable intervention for PD that can be protective against increased depressive symptoms, and can improve several non-motor domains, including executive dysfunction and related aspects of language production. (JINS, 2016, 22, 878–889)
A conspicuous silicified microfossil, Frankbaronia polyspora n. gen. n. sp., occurs in plant litter and as an inhabitant of microbial mats from the Lower Devonian Rhynie chert, Aberdeenshire, Scotland. Specimens are elongate-cylindrical, oval, or spherical, thin-walled, and may possess conical or column-like surface projections. Most specimens occur isolated, some are arranged in pairs or short chains. Each specimen contains several small spheres, each in turn with a (sub)centric opaque inclusion. Immature specimens indicate that ontogenesis in this fossil includes the formation of a single centric body of opaque material that subsequently is apportioned among the developing small spheres. Frankbaronia polyspora is quite similar in size and morphology to the oogonia containing oospores seen in certain extant members of the Peronosporomycetes. The Rhynie chert is known to contain the oldest fossil evidence of the Peronosporomycetes but only a single form (Hassiella monospora) has previously been documented. The discovery of a second putative representative of this group of organisms proves that this paleoecosystem is still an important source of new information on the paleodiversity of microbial life.
The experimental results of the activation spectra, dose rate measurements, and the residual nuclide production cross sections obtained after the irradiation of the NatCu and 59Co targets by 12C ion beams at ITEP and GSI are presented in this paper. These results are compared with simulations by the CASCADE and LAQGSM codes.
The recent interest of cognitive- and neuro-scientists in the topic of consciousness (and the dissatisfaction with the present state of knowledge) has revealed deep conceptual differences with Humanists, who have dealt with issues of consciousness for centuries. O'Regan & Noë have attempted (unsuccessfully) to bridge those differences.
Low-density, open-cell nickel base superalloy foams have been synthesized by a high-rate, electron beam-directed vapor deposition process and their mechanical properties evaluated. The deposition process uses an open-cell polymer foam template upon which is deposited a metal alloy coating. The electron beam evaporated flux was entrained in a rarefied transonic gas jet and propagated along the flow stream lines through the polymer structure. After vapor deposition, the polymer template was removed by low-temperature thermal decomposition. The resultant ultralightweight metal foams consisted of a three-dimensional open cell, reticulated structure possessing hollow triangular ligaments with relative densities of <3%. Their mechanical integrity was increased by either pressureless or transient liquid phase sintering. The mechanical properties of these ultralightweight metal foams were comparable to theoretical predictions for open-cell, reticulated foams.
The structure of compressively strained (GaIn)(NAs)/GaAs multi-quantum wells (MQWs) grown by MOVPE is investigated using TEM. The quaternary, metastable material exhibits a high structural perfection if a N concentration of 4% is not exceeded. Phase separation or clustering effects are not observed, and the In is dispersed homogeneously throughout the quantum wells. The interface roughness of the quantum wells to the GaAs barriers is in the order of several monolayers. Increasing the N content to above 4.5% results in a deterioration of the structure and of the homogeneity of the wells
Sea-surface films are derived from multiple sources, both in the sea and on land. Even in oligotrophic waters where biological productivity is low, the concentration of dissolved organic matter, including degraded biopolymers and geopolymeric materials, is sufficient to produce surface enrichments of organic matter under favourable physical conditions. Specific inputs from phytoplankton blooms and from neuston indigenous to the microlayer also contribute to the enrichment of surface-active matter at the interface. Terrestrial sources include both natural and anthropogenic contributions. Terrestrial plant-derived materials are released directly to the atmosphere and introduced via dry and wet deposition, or enter the ocean environment via riverine inputs as decay products of vegetation. Anthropogenic contributions include point sources related to industrial processes, agricultural runoff, and spills of petroleum products (catastrophic and chronic). In addition, municipal wastewater discharges are frequently highly enriched in surfactants that ultimately enter coastal seas and sediments. In shallow coastal environments, resuspension of sediments and release of sediment pore-water materials are other potential sources of surfactants.
The relative importance of these sources is not known. A major source of surfactants is thought to be production by phytoplankton, which exude natural surfactants as metabolic by-products (Zutic et al., 1981).
A closed irreducible 3-manifold M is topologically rigid if any homotopy equivalent irreducible 3-manifold is homeomorphic to M. A construction is given which produces infinitely many non-Haken topologically rigid 3-manifolds
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.