We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Secondary minerals formed during simulated weathering of nuclear waste glasses have been identified by analytical electron microscopy. A complete description of the reacted glass, from the outermost surface in direct contact with the leachant solution to the reacting front that migrates into the bulk glass, was obtained. Manganese and iron oxyhydroxide phases and saponite were found to have precipitated onto the residual glass surface from the leachant solution. Iron-bearing smectite, serpentine, and manganese and uranium-titanium oxyhydroxides formed in situ in the glass in several distinct bands at different depths beneath the original surface. This sequential development of secondary phases displays a clear trend toward more order and crystallinity in the phases farthest from the reaction front and indicates that complete restructuring of the glass into crystalline phases did not occur at the interface with fresh glass. Additionally, the formation of a discrete uranium-bearing phase, as opposed to uranium uptake by precipitated phases, suggests that stable actinide phase formation rather than ion exchange may be a possible mechanism for retarding radionuclide release to the environment.
Channels incised into bedrock, or Nye channels, often form an important component of subglacial drainage at temperate glaciers, and their structure exerts control over patterns and rates of (a) channel erosion, (b) water flow-velocity and (c) water pressure. The latter, in turn, exerts a strong control over basal traction and, thus, ice dynamics. In order to investigate these controls, it is necessary to quantify detailed flow processes in subglacial Nye channels. However, it is effectively impossible to acquire such measurements from fully pressurized, subglacial channels. To solve this problem, we here apply a three-dimensional, finite-volume solution of the Reynolds averaged Navier– Stokes (RANS) equations with a one-equation mixing-length turbulence closure to simulate flow in a 3 m long section of an active Nye channel located in the immediate foreground of Glacier de Tsanfleuron, Switzerland. Numerical model output permits high-resolution visualization of water flow through the channel reach, and enables evaluation of the experimental manipulation of the pressure field adopted across the overlying ice lid. This yields an increased theoretical understanding of the hydraulic behaviour of Nye channels, and, in the future, of their effect on glacier drainage, geomorphology and ice dynamics.
Hydrogels are considered smart materials because they respond to environmental stimuli. Sensors that monitor the body’s pH levels would be helpful for doctors to determine the severity of a patient’s condition, especially if they exhibit signs of shock. The motivation of this project is to create a biomedical device that can be worn sublingually or implanted into the body to help doctors with diagnosing a patient’s condition. The magnitude of the swelling/deswelling behavior can be measured by placing a sample of the hydrogel in a piezoresistive sensor. The degree of swelling/deswelling is directly proportional to the change in pH of the aqueous solution it is placed in. In this study, a variety of compositions of pH responsive hydrogels were designed and tested to determine the response time and magnitude for use in both macro and micro sensor arrays. This pressure sensor has been designed for use with thinner gels than have been used in the past. The results for swelling time and magnitude were compared to determine the effect of the thickness of the hydrogel samples on the swelling/deswelling kinetics of the material in order to find the appropriate composition, thickness and device that will yield the desired response rate and sensitivity.
A set of 10 SNPs associated with reading ability in 7-year-olds was reported based on initial pooled analyses of 100K SNP chip data, with follow-up testing stages using pooling and individual testing. Here we examine this association in an adolescent population sample of Australian twins and siblings (N = 1177) aged 12 to 25 years. One (rs1842129) of the 10 SNPs approached significance (P = .05) but no support was found for the remaining 9 SNPs or the SNP set itself. Results indicate that these SNPs are not associated with reading ability in an Australian population. The results are interpreted as supporting use of much larger SNP sets in common disorders where effects are small.
In the context of an Eulerian fluid description, we investigate the dynamics of a shock wave that is driven by the steady impulsively initiated motion of a two-dimensional planar piston with small corrugations superimposed on its surface. This problem was originally solved by Freeman (Proc. Royal Soc. A, vol. 228, 1955, pp. 341–362), who showed that piston-driven shocks are unconditionally stable when the fluid medium through which they propagate is an ideal gas. Here, we generalize Freeman’s mathematical framework to account for a fluid characterized by an arbitrary equation of state. We find that a sufficient condition for shock stability is , where is the D’yakov parameter and is a critical value less than unity. For values of within this range, linear perturbations imparted to the front by the piston at time attenuate asymptotically as . Outside of this range, the temporal behaviour of perturbations is more difficult to determine and further analysis is required to assess the stability of a shock front under such circumstances. As a benchmark of the main conclusions of this paper, we compare our generalized expression for the linearized shock-ripple amplitude with an independent Bessel-series solution derived by Zaidel’ (J. Appl. Math. Mech., vol. 24, 1960, pp. 316–327) and find excellent agreement.
The crustose lichen Lecanora conizaeoides has declined markedly around London with progressively diminishing sulphur dioxide pollution of the air since the 1960s. To identify the immediate causes of its decline, we applied S in the form of bisulphite (0·2 & 2 mM) and sulphate (2 mM), and N as nitrate (2 mM) to relict colonies of the lichen on beech trunks in a plantation in Windsor Forest. Growth of the lichen was monitored by estimating changes in percentage cover. By the end of a 25-month period of two-weekly treatments, all the chemical treatments had resulted in significant decreases in cover of L. conizaeoides compared to distilled water controls, with the 2 mM bisulphite causing the greatest loss. Bark surface pH was also lowered by the chemical treatments, but most by the 2 mM bisulphite applications. Similar results were obtained in two laboratory experiments where the nutrient applications were repeated under a controlled environment and thallus area monitored photographically. No evidence was obtained to support the hypothesis that growth of L. conizaeoides is stimulated by an elevated sulphur supply. We conclude that the disappearance of the lichen is linked to gradual increase in bark pH caused by the combined effects of a marked reduction in SO2 emissions and rising emissions of NH3.
Potential cases of presenile dementia of the Alzheimer type (PDAT) in the Northern Health Region (estimated population aged 45–64, 655800) were ascertained for the years 1979–86 from in-patient ICD-9 codes and other sources. An algorithm was applied to the casenote information to distinguish between Alzheimer-type and other forms of dementia. A search of the NHS central register was made to establish date and place of death. Estimates were made for patients with missing case records. The point prevalence rate for PDAT was estimated as 34·6 per 100000 with an annual incidence of 7·2 per 100000 in the 45–64 age range. These rates are compared with those reported in other studies. Five-year survival following diagnosis for incident cases of PDAT was 64% with a longevity quotient (LQ), the percentage of expected time actually survived, of 69%. There was no evidence of a more malignant course in PDAT when compared with survival in older patients with dementia of the Alzheimer type (DAT) in other studies. Sixty-six per cent of deaths occurred in hospital, 19% at home and 15% in residential homes.
Previous studies of vitamin C absorption in man using stable isotope probes have given results which cannot easily be reconciled with those obtained using non-isotope measurement. In order to investigate some of the apparent paradoxes we have conducted a study using two consecutive doses of vitamin C, one labelled and one unlabelled, given 90 min apart. Compatibility of the experimental results with two feasible models was investigated. In Model 1, ingested vitamin C enters a pre-existing pool before absorption, which occurs only when a threshold is exceeded; in Model 2, ingested vitamin C is exchanged with a pre-existing flux before absorption. The key difference between these two models lies in the predicted profile of labelled material in plasma. Model 1 predicts that the second unlabelled dose will produce a secondary release of labelled vitamin C which will not be observed on the basis of Model 2. In all subjects Model 1 failed to predict the observed plasma concentration profiles for labelled and unlabelled vitamin C, but Model 2 fitted the experimental observations. We speculate on possible physiological explanations for this behaviour, but from the limited information available cannot unequivocally confirm the model structure by identifying the source of the supposed flux.
Isoenzyme-based studies have identified 3 taxa/species/‘phylogenetic complexes’ as agents of visceral leishmaniasis in Sudan: L. donovani, L. infantum and “L. archibaldi”. However, these observations remain controversial. A new chitinase gene phylogeny was constructed in which stocks of all 3 putative species isolated in Sudan formed a monophyletic clade. In order to construct a more robust classification of the L. donovani complex, a panel of 16 microsatellite markers was used to describe 39 stocks of these 3 species. All “L. donovani complex” stocks from Sudan were again found to form a single monophyletic clade. L. donovani ss stocks from India and Kenya were found to form 2 region-specific clades. The partial sequence of the glutamate oxaloacetate transaminase (GOT) gene of 17 L. donovani complex stocks was obtained. A single nucleotide polymorphism in the GOT gene appeared to underlie the isoenzyme classification. It was concluded that isoenzyme-based identification is unsafe for stocks isolated in L. donovani endemic areas and identified as L. infantum. It was also concluded that the name L. archibaldi is invalid and that only a single visceralizing species, Leishmania donovani, is found in East Africa.
To assess the resource utilization associated with sepsis syndrome in academic medical centers.
Design:
Prospective cohort study.
Setting:
Eight academic, tertiary-care centers.
Patients:
Stratified random sample of 1,028 adult admissions with sepsis syndrome and all 248,761 other adult admissions between January 1993 and April 1994. The main outcome measures were length of stay (LOS) in total and after onset of sepsis syndrome (post-onset LOS) and total hospital charges.
Results:
The mean LOS for patients with sepsis was 27.7 ± 0.9 days (median, 20 days), with sepsis onset occurring after a mean of 8.1 ± 0.4 days (median, 3 days). For all patients without sepsis, the LOS was 7.2 ± 0.03 days (median, 4 days). In multiple linear regression models, the mean for patients with sepsis syndrome was 18.2 days, which was 11.0 days longer than the mean for all other patients (P < .0001), whereas the mean difference in total charges was $43,000 (both P < .0001). These differences were greater for patients with nosocomial as compared with community-acquired sepsis, although the groups were similar after adjusting for pre-onset LOS. Eight independent correlates of increased post-onset LOS and 12 correlates of total charges were identified.
Conclusions:
These data quantify the resource utilization associated with sepsis syndrome, and demonstrate that resource utilization is high in this group. Additional investigation is required to determine how much of the excess post-onset LOS and charges are attributable to sepsis syndrome rather than the underlying medical conditions.
Plasma phylloquinone (vitamin K1) concentration was examined according to season, socio-demographic and lifestyle factors and phylloquinone intake in a nationally representative sample of British people aged 65 years and over from the 1994–5 National Diet and Nutrition Survey. Values for both plasma phylloquinone concentration and phylloquinone intake were available from 1076 participants (561 men, 515 women). Eight hundred and thirty-four were living in private households, 242 in residential or nursing homes. Weighted geometric mean plasma phylloquinone concentrations were 0·36 (95 % CI 0·06, 2·01) and 0·24 (95 % CI 0·06, 0·96) nmol/l in free-living and institution samples respectively. Plasma phylloquinone concentrations did not generally differ between men and women, although values in free-living people were significantly lower during autumn and winter (October to March). Plasma phylloquinone concentration was not significantly associated with age. Plasma phylloquinone concentrations were positively correlated with phylloquinone intake in free-living men and women (r 0·18 and 0·30 respectively, both P<0·001). Stepwise multiple regression analysis found that 11 % of the variation in plasma phylloquinone concentration was explained by phylloquinone intake, season and plasma triacylglycerol concentration. After adjustment for age and corresponding nutrient intakes, plasma phylloquinone concentration was significantly associated (each P<0·01) with plasma concentrations of triacylglycerol, cholesterol, retinol and 25-hydroxyvitamin D in free-living women but not men, and with plasma concentrations of carotenes, α- and γ-tocopherols and lutein in free-living men and women. The possibility of concurrent low fat-soluble vitamin status in elderly populations may be a cause for concern.
Intake and sources of phylloquinone (vitamin K1) were examined according to socio-demographic and lifestyle factors in free-living British people aged 65 years and over, from the 1994–5 National Diet and Nutrition Survey. Complete 4-d weighed dietary records were obtained from 1152 participants living in private households. Using newly-available, mainly UK-specific food content data, the weighted geometric mean intake of phylloquinone was estimated at 65 (95 % CI 62, 67) μg/d for all participants, with higher intakes in men than in women (70 v. 61 μg/d respectively, P<0·01). The mean nutrient densities of phylloquinone intake were 9·3 and 10·5 μg/MJ for men and women respectively (P<0·01), after adjusting for age group, region and smoking status. Of all the participants, 59 % had phylloquinone intakes below the current guideline for adequacy of 1 μg/kg body weight per d. Participants aged 85 years and over, formerly in manual occupations, or living in Scotland or in northern England reported lower phylloquinone intakes than their comparative groups. Overall, vegetables contributed 60 % of total phylloquinone intake, with cooked green vegetables providing around 28 % of the total. Dietary supplements contributed less than 0·5 % of phylloquinone intake. Participants living in northern England or in Scotland, in particular, derived less phylloquinone from vegetables than those living in southern England.
Bryophytes are familiar and attractive ingredients in many types of natural landscape. Their shaggy coverings on branches and boughs, crags and boulders, in waterfalls and on woodland banks, add distinction to the larger scene. Less appealingly, they grow occasionally on bizarre materials, like the leather of a discarded boot, or a rusty iron pipe. Even in modern cities where air pollution and the built environment may seem unrelenting, there are bryophytes able to colonize crevices in masonry, soil accumulations in gutters, and to soften the otherwise geometrical wildernesses of roof tiles with their rounded cushions. To the scientist all these situations provide taxing problems concerning the supply of necessary resources, the impact of the bryophytes on their habitat, and their responses to undesirable chemicals in the environment. This chapter describes the special problems that bryophytes encounter in obtaining essential mineral nutrients, and in dealing with non-essential elements and compounds. The substratumt on which a bryophyte grows can be a source of nutrients and of other chemicals that may cause stresses. Also, the periods of time for which different types of substrata are available for colonization by bryophytes vary enormously. Therefore, both the chemical properties and the wider ecological characteristics of different substrata are considered from the point of view of their suitability for bryophyte growth. Many examples of bryophytes behaving as specific indicators of particular chemical environments are given. Their uses in biomonitoring provide practical instances of this.
The aims of the National Diet and Nutrition Survey series are summarized, and the new National Diet and Nutrition Survey of people aged 65 years and over is explored, with particular emphasis on micronutrient intakes and status indices. Mean nutrient intakes were generally satisfactory for most micronutrients, but intakes of vitamin D, Mg, K and Cu were low. Intakes of vitamin D were far below the reference nutrient intake for people aged 65 years and over, and there was also biochemical evidence of vitamin D deficiency, for 8 % of free-living and 37 % of institution participants, attributed partly to limited exposure to sunlight. A substantial proportion of people living in institutions had inadequate biochemical status indices, notably for vitamin C, Fe and folate. Relationships between intake and status were close for vitamins. Mineral intakes did not correlate well with currently used status indices. Some intakes and indices, especially those of vitamin C, carotenoids, Na and K, were strongly correlated with socio-economic status and with north–south gradients in Britain. Future research challenges should address the functional and health significance of low intakes and sub-optimal biochemical indices for certain micronutrients, especially for people living in institutions; the shortcomings of mineral status indices especially as indicators of mineral intake; the social and geographical inequalities of micronutrient intakes and status, and why micronutrient status deteriorates with increasing age. The answers to these questions will help to define the characteristics of nutritional risk for older people in Britain, and to clarify future needs for education and intervention.