We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the serendipitous radio-continuum discovery of a likely Galactic supernova remnant (SNR) G305.4–2.2. This object displays a remarkable circular symmetry in shape, making it one of the most circular Galactic SNRs known. Nicknamed Teleios due to its symmetry, it was detected in the new Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) radio–continuum images with an angular size of 1 320$^{\prime\prime}$$\times$1 260$^{\prime\prime}$ and PA = 0$^\circ$. While there is a hint of possible H$\alpha$ and gamma-ray emission, Teleios is exclusively seen at radio–continuum frequencies. Interestingly, Teleios is not only almost perfectly symmetric, but it also has one of the lowest surface brightnesses discovered among Galactic SNRs and a steep spectral index of $\alpha$=–0.6$\pm$0.3. Our best estimates from Hi studies and the $\Sigma$–D relation place Teleios as a type Ia SNR at a distance of either $\sim$2.2 kpc (near-side) or $\sim$7.7 kpc (far-side). This indicates two possible scenarios, either a young (under 1 000 yr) or a somewhat older SNR (over 10 000 yr). With a corresponding diameter of 14/48 pc, our evolutionary studies place Teleios at the either early or late Sedov phase, depending on the distance/diameter estimate. However, our modelling also predicts X-ray emission, which we do not see in the present generation of eROSITA images. We also explored a type Iax explosion scenario that would point to a much closer distance of $\lt$1 kpc and Teleios size of only $\sim$3.3 pc, which would be similar to the only known type Iax remnant SN1181. Unfortunately, all examined scenarios have their challenges, and no definitive Supernova (SN) origin type can be established at this stage. Remarkably, Teleios has retained its symmetrical shape as it aged even to such a diameter, suggesting expansion into a rarefied and isotropic ambient medium. The low radio surface brightness and the lack of pronounced polarisation can be explained by a high level of ambient rotation measure (RM), with the largest RM being observed at Teleios’s centre.
Medicinal cannabis has been trialled for Tourette syndrome in adults, but it has not been studied in adolescents. This open-label, single-arm trial study evaluated the feasibility, acceptability and signal of efficacy of medicinal cannabis in adolescents (12–18 years), using a Δ9-tetrahydrocannabinol:cannabidiol ratio of 10:15, with dose varying from 5 to 20 mg/day based on body weight and response. The study demonstrated feasibility of recruitment, acceptability of study procedures, potential benefits and a favourable safety profile, with no serious adverse events. Commonly reported adverse events were tiredness and drowsiness, followed by dry mouth. Statistically significant improvement was observed in parent and clinician reports on tics (paired t-test P = 0.003), and behavioural and emotional issues (paired t-test P = 0.048) and quality of life as reported by the parent and young person (paired t-test P = 0.027 and 0.032, respectively). A larger-scale, randomised controlled trial is needed to validate these findings.
Several new foraminiferal taxa are described from the Changhsingian carbonates of southern Turkey, and their evolutionary relationships are discussed within the middle to late Permian time frame. Comprising Retroseptellina, Septoglobivalvulina, and Paraglobivalvulinoides, Retroseptellininae n. subfam. originated in the Wordian with thin and dense microgranular walls and became diverse and abundant in Changhsingian strata. Paraglobivalvulina? intermedia n. sp. appeared in the late Capitanian, survived into the Changhsingian, and gave way to completely involute tests of Paraglobivalvulininae. From the class Miliolata, Midiellidae n. fam., consisting of Midiella and Pseudomidiella, is characterized by sigmoidal coiling, and Pseudomidiella sahini n. sp. is probably the youngest known Changhsingian descendant. Glomomidiellopsis? okayi n. sp., which is interpreted as an evolutionary link between Capitanian Hemigordiopsis and Lopingian Glomomidiellopsis, survived into the Changhsingian. In the class Nodosariata, from the fully coiled Robuloides lineage of Robuloididae, Robuloides lata n. sp. and Plectorobuloides taurica n. gen. n. sp. most likely originated from R. lens in the Changhsingian. The R. acutus lineage, characterized by the reduction of laterally thickened hyaline wall and the appearance of evolute coiling, yielded Robuloides? rettorii n. sp. and Pseudorobuloides reicheli n. gen. n. sp. Calvezina anatolica n. sp. and Eomarginulinella galinae n. sp. are interpreted to have evolved from weakly coiled lineages in Robuloididae, whereas Pseudocryptomorphina amplimuralis n. gen. n. sp. is a poorly understood taxon and requires further study. Robustopachyphloia farinacciae n. sp. is interpreted as a descendant of some species within the genus Pachyphloia. The presence of canal-like pores in the wall of some Pachyphloia specimens is suggestive of a new morphological structure in the evolutionary history of the Changhsingian foraminifera.
We present a re-discovery of G278.94+1.35a as possibly one of the largest known Galactic supernova remnants (SNRs) – that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new Evolutionary Map of the Universe (EMU) and GaLactic and Extragalactic All-sky MWA (GLEAM) radio continuum images at an angular size of $3{{{{.\!^\circ}}}}33\times3{{{{.\!^\circ}}}}23$, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157$\times$152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of $\sim$1 kpc, implying its diameter is 58$\times$56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula.
Many marine fish species are experiencing population declines, but their extinction risk profiles are largely understudied in comparison to their terrestrial vertebrate counterparts. Selective extinction of marine fish species may result in rapid alteration of the structure and function of ocean ecosystems. In this study, we compiled an ecological trait dataset for 8,185 species of marine ray-finned fishes (class Actinopterygii) from FishBase and used phylogenetic generalized linear models to examine which ecological traits are associated with increased extinction risk, based on the International Union for the Conservation of Nature Red List. We also assessed which threat types may be driving these species toward greater extinction risk and whether threatened species face a greater average number of threat types than non-threatened species. We found that larger body size and/or fishes with life histories involving movement between marine, brackish, and freshwater environments are associated with elevated extinction risk. Commercial harvesting threatens the greatest number of species, followed by pollution, development, and then climate change. We also found that threatened species, on average, face a significantly greater number of threat types than non-threatened species. These results can be used by resource managers to help address the heightened extinction risk patterns we found.
Employer engagement with active labour market programmes (ALMPs) and related employability projects is seen as vital to their ‘success’. However, the role of employers remains under-researched – a gap which widens in relation to non-governmental programmes led by not-for-profit, third-sector organisations (TSOs). Recent studies suggest that engaging employers may depend on addressing both human resource (HR) and corporate social responsibility (CSR) ‘logics’ and linking the roles of ‘gatekeeper to jobs’ and ‘proactive strategic partner’. A key question is whether TSO-led programmes are better placed to combine these logics and roles in engaging employers to help vulnerable groups into decent sustainable employment. The article explores this through a case study of two projects in England. The findings highlight the challenges that TSOs face in having to appeal almost exclusively to a CSR logic and explores why this is the case.
A central question in the study of mass extinction is whether these events simply intensify background extinction processes and patterns versus change the driving mechanisms and associated patterns of selectivity. Over the past two decades, aided by the development of new fossil occurrence databases, selectivity patterns associated with mass extinction have become increasingly well quantified and their differences from background patterns established. In general, differences in geographic range matter less during mass extinction than during background intervals, while differences in respiratory and circulatory anatomy that may correlate with tolerance to rapid change in oxygen availability, temperature, and pH show greater evidence of selectivity during mass extinction. The recent expansion of physiological experiments on living representatives of diverse clades and the development of simple, quantitative theories linking temperature and oxygen availability to the extent of viable habitat in the oceans have enabled the use of Earth system models to link geochemical proxy constraints on environmental change with quantitative predictions of the amount and biogeography of habitat loss. Early indications are that the interaction between physiological traits and environmental change can explain substantial proportions of observed extinction selectivity for at least some mass extinction events. A remaining challenge is quantifying the effects of primary extinction resulting from the limits of physiological tolerance versus secondary extinction resulting from the loss of taxa on which a given species depended ecologically. The calibration of physiology-based models to past extinction events will enhance their value in prediction and mitigation efforts related to the current biodiversity crisis.
To identify associations between demographics, social determinants of health, health conditions, and reported history of insomnia. A cross-sectional study including 11,960 adult community members recruited through HealthStreet, a community outreach program at University of Florida.
Methods:
Health assessments were conducted via interviews. Participants reported their demographic background, level of social support, history of health conditions, and insomnia. Logistic regression was used to understand associations between risk factors and history of insomnia.
Results:
The prevalence of self-reported insomnia was 27.3%. Adults aged ≥ 65 years (OR = 1.16) and women (OR = 1.18) reported higher rates of insomnia than their counterparts. Black/African American individuals reported lower rates of insomnia (OR = 0.72) than White individuals. Individuals with food insecurity (OR = 1.53), a military history (OR = 1.30), lower social support (OR = 1.24), living alone (OR = 1.14), anxiety (OR = 2.33), cardiometabolic disease (OR = 1.58), and attention-deficit hyperactivity disorder (ADHD) (OR = 1.44) were significantly more likely to endorse insomnia compared with their counterparts. Depression (OR = 2.57) had the strongest association with insomnia.
Conclusions:
This study provides evidence regarding who is at greater risk for insomnia among a large community-based sample. Our findings highlight the importance of screening for insomnia, particularly among patients who experience food insecurity, are military veterans, have anxiety, depression, ADHD, or cardiometabolic disease, as well as those who live alone or have lower levels of social support. Future public health campaigns should provide education on insomnia symptoms, treatments, and evidenced-based sleep-promotion strategies.
Studies of insect herbivory on fossilized leaves tend to focus on a few, relatively simple metrics that are agnostic to the distribution of insect damage types among host plants. More complex metrics that link particular damage types to particular host plants have the potential to address additional ecological questions, but such metrics can be biased by sampling incompleteness due to the difficulty of distinguishing the true absence of a particular interaction from the failure to detect it—a challenge that has been raised in the ecological literature. We evaluate a range of methods for characterizing the relationships between damage types and host plants by performing resampling and subsampling exercises on a variety of datasets. We found that the components of beta diversity provide a more valid, reliable, and interpretable method for comparing component communities than do bipartite network metrics and that the rarefaction of interactions represent a valid, reliable, and interpretable method for comparing compound communities. Both beta diversity and rarefaction of interactions avoid the potential pitfalls of multiple comparisons. Finally, we found that the host specificity of individual damage types is challenging to assess. Whereas bipartite network metrics are sufficiently biased by sampling incompleteness to be inappropriate for fossil herbivory data, alternatives exist that are perfectly suitable for fossil datasets with sufficient sample coverage.
Foraminifera are important components of tropical marine benthic ecosystems and their recovery pattern from the end-Permian mass extinction can yield insights into the Mesozoic history of this group. Here we report the calcareous and agglutinated foraminifera recovered from five measured stratigraphic sections on the Great Bank of Guizhou, an uppermost Permian to Upper Triassic isolated carbonate platform in the Nanpanjiang Basin, south China. The material contains >100 Triassic species, including three that are newly described (Arenovidalina weii n. sp., Meandrospira? enosi n. sp., and Spinoendotebanella lehrmanni n. gen., n. sp.), ranging from Griesbachian (Induan) to Cordevolian (Carnian) age. The species belong to the classes Miliolata, Textulariata, Fusulinata, Nodosariata, and to an unknown class housing all aragonitic forms of the orders Involutinida and Robertinida. Based on previously established conodont zones and carbon isotope chemostratigraphy, the Griesbachian (early Induan) through Illyrian (late Anisian) interval has been subdivided into 12 foraminiferal zones and two unnamed intervals devoid of foraminifera. Following the extinction at the Permian-Triassic boundary, habitable ecological niches of Griesbachian age were invaded by disaster taxa that subsequently became extinct during the Dienerian (late Induan) and left no younger descendants. The disaster taxa were replaced by Lazarus taxa with Permian origins, which were then decimated by the Smithian-Spathian (mid-Olenekian) boundary crisis. The tempo of recovery appears to have been modulated by environmental changes during the Griesbachian through Smithian that involved both climate change and expansion of anoxic ocean bottom waters. Uninterrupted and lasting recovery of benthic foraminifera did not begin until the Spathian.
Reading difficulties are one of the most significant challenges for children with neurofibromatosis type 1 (NF1). The aims of this study were to identify and categorize the types of reading impairments experienced by children with NF1 and to establish predictors of poor reading in this population.
Method:
Children aged 7–12 years with NF1 (n = 60) were compared with typically developing children (n = 36). Poor word readers with NF1 were classified according to impairment type (i.e., phonological, surface, mixed), and their reading subskills were compared. A hierarchical multiple regression was conducted to identify predictors of word reading.
Results:
Compared to controls, children with NF1 demonstrated significantly poorer literacy abilities. Of the 49 children with NF1 classified as poor readers, 20 (41%) were classified with phonological dyslexia, 24 (49%) with mixed dyslexia, and 5 (10%) fell outside classification categories. Children with mixed dyslexia displayed the most severe reading impairments. Stronger working memory, better receptive language, and fewer inattentive behaviors predicted better word reading skills.
Conclusions:
The majority of children with NF1 experience deficits in key reading skills which are essential for them to become successful readers. Weaknesses in working memory, receptive language, and attention are associated with reading difficulties in children with NF1.
The typical marine animal has increased in biovolume by more than two orders of magnitude since the beginning of the Cambrian, but the causes of this trend remain unknown. We test the hypothesis that the efficiency of intra-organism oxygen delivery is a major constraint on body-size evolution in marine animals. To test this hypothesis, we compiled a dataset comprising 13,723 marine animal genera spanning the Phanerozoic. We coded each genus according to its respiratory medium, circulatory anatomy, and feeding mode. In extant genera, we find that respiratory medium and circulatory anatomy explain more of the difference in size than feeding modes. Likewise, we find that most of the Phanerozoic increase in mean biovolume is accounted for by size increase in taxa that accomplish oxygen delivery through closed circulatory systems. During the Cambrian, water-breathing animals with closed circulatory systems were smaller, on average, than contemporaries with open circulatory systems. However, genera with closed circulatory systems superseded in size genera with open circulatory systems by the Middle Ordovician, as part of their Phanerozoic-long trend of increasing size. In a regression analysis, respiratory and circulatory anatomy explain far more size variation in the living fauna than do feeding modes, even after accounting for taxonomic affinity at the class level. These findings suggest that ecological and environmental drivers of the Phanerozoic increase in the mean size of marine animals operated within strong, anatomically determined constraints.
Larger body size has long been assumed to correlate with greater risk of extinction, helping to shape body-size distributions across the tree of life, but a lack of comprehensive size data for fossil taxa has left this hypothesis untested for most higher taxa across the vast majority of evolutionary time. Here we assess the relationship between body size and extinction using a data set comprising the body sizes, stratigraphic ranges, and occurrence patterns of 9408 genera of fossil marine animals spanning eight Linnaean classes across the past 485 Myr. We find that preferential extinction of smaller-bodied genera within classes is substantially more common than expected due to chance and that there is little evidence for preferential extinction of larger-bodied genera. Using a capture–mark–recapture analysis, we find that this size bias of extinction persists even after accounting for a pervasive bias against the sampling of smaller-bodied genera within classes. The size bias in extinction also persists after including geographic range as an additional predictor of extinction, indicating that correlation between body size and geographic range does not provide a simple explanation for the association between size and extinction. Regardless of the underlying causes, the preferential extinction of smaller-bodied genera across many higher taxa and most of geologic time indicates that the selective loss of large-bodied animals is the exception, rather than the rule, in the evolution of marine animals.
The taxonomic and ecologic composition of Earth's biota has shifted dramatically through geologic time, with some clades going extinct while others diversified. Here, we derive a metric that quantifies the change in biotic composition due to extinction or origination and show that it equals the product of extinction/origination magnitude and selectivity (variation in magnitude among groups). We also define metrics that describe the extent to which a recovery (1) reinforced or reversed the effects of extinction on biotic composition and (2) changed composition in ways uncorrelated with the extinction. To demonstrate the approach, we analyzed an updated compilation of stratigraphic ranges of marine animal genera. We show that mass extinctions were not more selective than background intervals at the phylum level; rather, they tended to drive greater taxonomic change due to their higher magnitudes. Mass extinctions did not represent a separate class of events with respect to either strength of selectivity or effect. Similar observations apply to origination during recoveries from mass extinctions, and on average, extinction and origination were similarly selective and drove similar amounts of biotic change. Elevated origination during recoveries drove bursts of compositional change that varied considerably in effect. In some cases, origination partially reversed the effects of extinction, returning the biota toward the pre-extinction composition; in others, it reinforced the effects of the extinction, magnifying biotic change. Recoveries were as important as extinction events in shaping the marine biota, and their selectivity deserves systematic study alongside that of extinction.
Organismal metabolic rates reflect the interaction of environmental and physiological factors. Thus, calcifying organisms that record growth history can provide insight into both the ancient environments in which they lived and their own physiology and life history. However, interpreting them requires understanding which environmental factors have the greatest influence on growth rate and the extent to which evolutionary history constrains growth rates across lineages. We integrated satellite measurements of sea-surface temperature and chlorophyll-a concentration with a database of growth coefficients, body sizes, and life spans for 692 populations of living marine bivalves in 195 species, set within the context of a new maximum-likelihood phylogeny of bivalves. We find that environmental predictors overall explain only a small proportion of variation in growth coefficient across all species; temperature is a better predictor of growth coefficient than food supply, and growth coefficient is somewhat more variable at higher summer temperatures. Growth coefficients exhibit moderate phylogenetic signal, and taxonomic membership is a stronger predictor of growth coefficient than any environmental predictor, but phylogenetic inertia cannot fully explain the disjunction between our findings and the extensive body of work demonstrating strong environmental control on growth rates within taxa. Accounting for evolutionary history is critical when considering shells as historical archives. The weak relationship between variation in food supply and variation in growth coefficient in our data set is inconsistent with the hypothesis that the increase in mean body size through the Phanerozoic was driven by increasing productivity enabling faster growth rates.
Energy availability influences natural selection on the ontogenetic histories of organisms. However, it remains unclear whether physiological controls on size remain constant throughout ontogeny or instead shift as organisms grow larger. Benthic foraminifera provide an opportunity to quantify and interpret the physicochemical controls on both initial (proloculus) and adult volumes across broad environmental gradients using first principles of cell physiology. Here, we measured proloculus and adult test dimensions of 129 modern rotaliid species from published images of holotype specimens, using holotype size to represent the maximum size of all species’ occurrences across the North American continental margin. We merged size data with mean annual temperature, dissolved oxygen concentration, particulate organic carbon flux, and seawater calcite saturation for 718 unique localities to quantify the relationship between physicochemical variables and among-species adult/proloculus size ratios. We find that correlation of community mean adult/proloculus size ratios with environmental parameters reflects covariation of adult test volume with environmental conditions. Among-species proloculus sizes do not covary identifiably with environmental conditions, consistent with the expectation that environmental constraints on organism size impose stronger selective pressures on adult forms due to lower surface area-to-volume ratios at larger sizes. Among-species adult/proloculus size ratios of foraminifera occurring in resource-limited environments are constrained by the limiting resource in addition to temperature. Identified limiting resources are food in oligotrophic waters and oxygen in oxygen minimum zones. Because among-species variations in adult/proloculus size ratios from the North American continental margin are primarily driven by the local environment’s influence on adult sizes, the evolution of foraminiferal sizes over the Phanerozoic may have been strongly influenced by changing oceanographic conditions. Furthermore, lack of correspondence between among-species proloculus sizes and environmental conditions suggests that offspring sizes in foraminifera are rarely limited by physiological constraints and are more susceptible to selection related to other aspects of fitness.