We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
Based on erosion coupon tests, a sand erosion model for 17-4PH steel was developed. The developed erosion model was validated against the results of compressor erosion tests from a generic rig and from other researchers. A high-fidelity computational fluid dynamics (CFD) model of the test rig was built, a user-defined function was developed to implement the erosion model into the ANSYS CFD software, and the turbulent, two-phase flow-field in multiple reference frames was solved. The simulation results are consistent with the test results from the compressor rig and with experimental findings from other researchers. Specifically, the sand erosion blunts the leading edge, sharpens the trailing edge and increases pressure-surface roughness. The comparisons between the experimental observations and numerical results as well as a quantitative comparison with three other sand erosion models indicate that the developed sand erosion model is adequate for erosion prediction of engine components made of 17-4PH steel.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
This study aimed to investigate the clinical characteristics and to analyse the epidemiological features of coronavirus disease 2019 (COVID-19) patients during convalescence. In this study, we enrolled 71 confirmed cases of COVID-19 who were discharged from hospital and transferred to isolation wards from 6 February to 26 March 2020. They were all employees of Zhongnan Hospital of Wuhan University or their family members of which three cases were <18 years of age. Clinical data were collected and analysed statistically. Forty-one cases (41/71, 57.7%) comprised medical faculty, young and middle-aged patients (aged ⩽60 years) accounted for 81.7% (58/71). The average isolation time period for all adult patients was 13.8 ± 6.1 days. During convalescence, RNA detection results of 35.2% patients (25/71) turned from negative to positive. The longest RNA reversed phase time was 7 days. In all, 52.9% of adult patients (36/68) had no obvious clinical symptoms, and the remaining ones had mild and non-specific clinical symptoms (e.g. cough, sputum, sore throat, disorders of the gastrointestinal tract etc.). Chest CT signs in 89.7% of adult patients (61/68) gradually improved, and in the others, the lesions were eventually absorbed and improved after short-term repeated progression. The main chest CT manifestations of adult patients were normal, GGO or fibre streak shadow, and six patients (8.8%) had extrapulmonary manifestations, but there was no significant correlation with RNA detection results (r = −0.008, P > 0.05). The drug treatment was mainly symptomatic support therapy, and antibiotics and antiviral drugs were ineffective. It is necessary to re-evaluate the isolation time and standard to terminate isolation for discharged COVID-19 patients.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.
Studies revealed that prenatal stress (PS) may increase the vulnerability to depression in their offspring, and ERK-CREB signal system might play a role in its mechanism.
Objectives and aims
The present study investigated the effect of MK-801 on depressive-like behavior and its impacts on ERK2, CREB, Bcl-2 mRNA expression in PS female rat offspring.
Methods
The pregnant rats were randomly divided into three groups, the control group (Con) was left undisturbed, the PS-saline group (PS-saline) and the PS-MK-801 group (PS-MK-801) were subjected to restraint stress on days 14–20 of pregnancy three times daily for 45 min, and received an i.p. administration of saline or MK-801(sigma, 0.2 mg/kg) 30 min before the first stress respectively. Forced swimming test was undertaken to assess depressive-like behavior in one month female offspring. ERK2, CREB, Bcl-2 mRNA in the hippocampus, frontal cortex, and striatum were detected by RT-PCR.
Results
PS-saline spent significantly more immobile time compared to Con and PS-MK-801 (P < 0.05). ERK2 and CREB mRNA expression in hippocampus and frontal cortex was significantly decreased in PS-saline compared to Con and PS-MK-801 (P < 0.05), while in striatum CREB mRNA expression in PS-saline was lower than Con (P < 0.05). Bcl-2 mRNA expression in hippocampus and striatum was significantly decreased in PS-saline (P < 0.05), and in frontal cortex, its expression was significantly lower in PS-saline and PS-MK-801 (P < 0.05).
Conclusions
PS may suppress ERK-CREB signal pathway in female offspring rats, which could be partly prevented by MK- 801. (Supported by National Natural Science Foundation of China, No: 30970952).
Current available antidepressants exhibit low remission rate with a long response lag time. Growing evidence has demonstrated acute sub-anesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant effects. However, a long term use of ketamine tends to elicit its adverse reactions. The present study aimed to investigate the antidepressant-like effects of intermittent and consecutive administrations of ketamine on chronic unpredictable mild stress (CUMS) rats, and to determine whether ketamine can redeem the time lag for treatment response of classic antidepressants. The behavioral responses were assessed by the sucrose preference test, forced swimming test, and open field test. In the first stage of experiments, all the four treatment regimens of ketamine (10 mg/kg ip, once daily for 3 or 7 consecutive days, or once every 7 or 3 days, in a total 21 days) showed robust antidepressant-like effects, with no significant influence on locomotor activity and stereotype behavior in the CUMS rats. The intermittent administration regimens produced longer antidepressant-like effects than the consecutive administration regimens and the administration every 7 days presented similar antidepressant-like effects with less administration times compared with the administration every 3 days. In the second stage of experiments, the combination of ketamine (10 mg/kg ip, once every 7 days) and citalopram (20 mg/kg po, once daily) for 21 days caused more rapid and sustained antidepressant-like effects than citalopram administered alone. In summary, repeated sub-anesthestic doses of ketamine can redeem the time lag for the antidepressant-like effects of citalopram, suggesting the combination of ketamine and classic antidepressants is a promising regimen for depression with quick onset time and stable and lasting effects.
Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors.
Methods:
DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined.
Results:
Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving.
Conclusions:
These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD.
The development of digestive organs and the establishment of gut microbiota in pullets play an important role throughout life. This study was conducted to investigate the effects of Bacillus subtilis (BS) on growth performance, intestinal function and gut microbiota in pullets from 0 to 6 weeks of age. Hy-line Brown laying hens (1-day-old, n = 504) were randomly allotted into four diets with a 2 × 2 factorial design: (1) basal diet group (control); (2) antibiotics group (AGP), the basal diet supplemented with 20 mg/kg Bacitracin Zinc and 4 mg/kg Colistin Sulphate; (3) BS group, the basal diet supplemented with 500 mg/kg BS and (4) mixed group, the basal diet supplemented with both AGP and BS. As a result, when BS was considered the main effect, BS addition (1) reduced the feed conversion ratio at 4 to 6 weeks (P < 0.05); (2) decreased duodenal and jejunal crypt depth at 3 weeks; (3) increased the villus height : crypt depth (V : C) ratio in the duodenum at 3 weeks and jejunal villus height at 6 weeks and (4) increased sucrase mRNA expression in the duodenum at 3 weeks as well as the jejunum at 6 weeks, and jejunal maltase and aminopeptidase expression at 3 weeks. When AGP was considered the main effect, AGP supplementation (1) increased the V : C ratio in the ileum at 3 weeks of age; (2) increased sucrase mRNA expression in the duodenum at 3 weeks as well as the ileum at 6 weeks, and increased maltase expression in the ileum. The BS × AGP interaction was observed to affect average daily feed intake at 4 to 6 weeks, and duodenal sucrase and jejunal maltase expression at 3 weeks. Furthermore, dietary BS or AGP addition improved caecal microbial diversity at 3 weeks, and a BS × AGP interaction was observed (P < 0.05) for the Shannon and Simpson indexes. At the genus level, the relative abundance of Lactobacillus was found to be higher in the mixed group at 3 weeks and in the BS group at 6 weeks. Moreover, Anaerostipes, Dehalobacterium and Oscillospira were also found to be dominant genera in pullets with dietary BS addition. In conclusion, BS could improve intestinal morphology and change digestive enzyme relative expression and caecum microbiota, thereby increasing the efficiency of nutrient utilization. Our findings suggested that BS might have more beneficial effects than AGP in the study, which would provide theoretical evidence and new insight into BS application in layer pullets.
This study aimed at comparing the factors associated with the natural progression between typical progressors (TPs) and rapid progressors (RPs) in HIV-infected individuals. A retrospective study was conducted on 2095 eligible HIV-infected individuals from 1995 to 2016 in a high-risk area of Henan Province, China. Propensity score matching was used to balance covariates, and the conditional logistic regression analyses were performed to explore the factors of natural disease progression among HIV infectors. A total of 379 pairs of RPs and TPs were matched. The standardised difference values of all covariates were less than 10%. HIV-infected individuals transmitted through sexual transmission (odds ratio (OR) 0.56, 95% confidence interval (CI) 0.36–0.85) were more likely to progress to AIDS compared with those infected through contaminated blood. Older age at diagnosis of HIV-infected individuals (OR 0.72, 95% CI 0.58–0.89) exhibited a faster progression to AIDS. HIV-infected individuals identified through a unique survey (OR 7.01, 95% CI 2.99–16.44) were less likely to progress to AIDS compared with those identified through medical institutions. HIV-infected individuals who had higher baseline CD4+T cell counts (OR 3.37, 95% CI 2.59–4.38) had a slower progression to AIDS. These findings provide evidence for natural disease progression from HIV to AIDS between TPs and RPs.
The small intestine is an important digestive organ and plays a vital role in the life of a pig. We tested the hypothesis that the length of the small intestine is related to growth performance and intestinal functions of piglets. A total of 60 piglets (Duroc × Landrace × Yorkshire), weaned at day 21, were fed an identical diet during a 28-day trial. At the end of the study, all piglets were sacrificed, dissected and grouped according to small intestine lengths (SILs), either short small intestine (SSI), middle small intestine (MSI) or long small intestine (LSI), respectively. Positive relationships between SIL and BW, average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratios (G : F) were observed. Final BW, ADG, ADFI and G : F significantly increased (P < 0.05) in MSI and LSI piglets compared with SSI piglets. Short small intestine and MSI had greater jejunal mucosa sucrase and alkaline phosphatase activities (P < 0.05) than LSI piglets. The mRNA level of solute carrier family 2 member 2 (Slc2a2) in the jejunal mucosa of SSI piglets was the greatest. The MSI piglets had a greater (P < 0.05) ileal villus height than other piglets and greater (P < 0.05) villus height-to-crypt depth ratios than LSI piglets. However, the LSI piglets had a greater (P < 0.05) ileal crypt depth than SSI piglets. No significant differences in duodenal, jejunal, caecal and colonic morphologies were detected among the groups. Moreover, luminal acetate, propionate, butyrate and total short-chain fatty acid contents were greater (P < 0.05) in SSI and MSI piglets than those in LSI piglets. In addition, there was greater serum glucose concentration in MSI piglets than other piglets. Serum albumin concentration in SSI piglets was the lowest. In conclusion, these results indicate that SIL was significantly positively associated with growth performance, and in terms of intestinal morphology and mucosal digestive enzyme activity, the piglets with a medium length of small intestine have better digestion and absorption properties.
Small intestinal epithelium homeostasis involves four principal cell types: enterocytes, goblet, enteroendocrine and Paneth cells. Epidermal growth factor (EGF) has been shown to affect enterocyte differentiation. This study determined the effect of dietary EGF on goblet, enteroendocrine and Paneth cell differentiation in piglet small intestine and potential mechanisms. Forty-two weaned piglets were used in a 2 × 3 factorial design; the major factors were time post-weaning (days 7 and 14) and dietary treatment (0, 200 or 400 µg/kg EGF supplementation). The numbers of goblet and enteroendocrine cells were generally greater with the increase in time post-weaning. Moreover, the supplementation of 200 µg/kg EGF increased (P < 0.01) the number of goblet and enteroendocrine cells in villus and crypt of the piglet small intestine as compared with the control. Dietary supplementation with 200 µg/kg EGF enhanced (P < 0.05) abundances of differentiation-related genes atonal homologue 1, mucin 2 and intestinal trefoil factor 3 messenger RNA (mRNA) as compared with the control. Piglets fed 200 or 400 µg/kg EGF diet had increased (P < 0.05) abundances of growth factor-independent 1, SAM pointed domain containing ETS transcription factor and pancreatic and duodenal homeobox 1 mRNA, but decreased the abundance (P < 0.01) of E74 like ETS transcription factor 3 mRNA as compared with the control. Animals receiving 400 µg/kg EGF diets had enhanced (P < 0.05) abundances of neurogenin3 and SRY-box containing gene 9 mRNA as compared with the control. The mRNA abundance and protein expression of lysozyme, a marker of Paneth cell, were also increased (P < 0.05) in those animals. As compared with the control, dietary supplementation with 200 µg/kg EGF increased the abundance of EGF receptor mRNA and the ratio of non-phospho(p)-β-catenin/β-catenin (P < 0.05) in villus epithelial cells at days 7 and 14. This ratio in crypt epithelial cells was higher (P < 0.05) on the both 200 and 400 µg/kg EGF groups during the same period. Our results demonstrated that dietary EGF stimulated goblet, enteroendocrine and Paneth cell differentiation in piglets during the post-weaning period, partly through EGFR and Wnt/β-catenin signalling.
Flow over aligned and staggered cube arrays is a classic model problem for rough-wall turbulent boundary layers. Earlier studies of this model problem mainly looked at rough surfaces with a moderate coverage density, i.e. $\unicode[STIX]{x1D706}_{p}>O(3\,\%)$, where $\unicode[STIX]{x1D706}_{p}$ is the surface coverage density and is defined to be the ratio between the area occupied by the roughness and the total ground area. At lower surface coverage densities, i.e. $\unicode[STIX]{x1D706}_{p}<O(3\,\%)$, it is conventionally thought that cubical roughness acts like isolated roughness elements; and that the single-cube drag coefficient, i.e. $C_{d}\equiv f/(\unicode[STIX]{x1D70C}U_{h}^{2}h^{2})$, equals $C_{R}$. Here, $f$ is the drag force on one cubical roughness element, $\unicode[STIX]{x1D70C}=\text{const.}$ is the fluid density, $h$ is the height of the cube, $U_{h}$ is the spatially and temporally averaged wind speed at the cube height, and $C_{R}$ is the drag coefficient of an isolated cube. In this work, we conduct large-eddy simulations and direct numerical simulations of flow over wall-mounted cubes with very low surface coverage densities, i.e. $0.08\,\%<\unicode[STIX]{x1D706}_{p}<4.4\,\%$. The large-eddy simulations are at nominally infinite Reynolds numbers. The results challenge the conventional thinking, and we show that, at very low surface coverage densities, the single-cube drag coefficient may increase as a function of $\unicode[STIX]{x1D706}_{p}$. Our analysis suggests that this behaviour may be attributed to secondary turbulent flows. Secondary turbulent flows are often found above spanwise-heterogeneous roughness. Although the roughness considered in this work is nominally homogeneous, the secondary flows in our simulations are very similar to those observed above spanwise-heterogeneous surface roughness. These secondary vortices redistribute the fluid momentum in the outer layer, leading to high-momentum pathways above the wall-mounted cubes and low-momentum pathways at the two sides of the wall-mounted cubes. As a result, the spatially and temporally averaged wind speed at the cube height, i.e. $U_{h}$, is an underestimate of the incoming flow to the cubes, which in turn leads to a large drag coefficient $C_{d}$.
Some studies have shown that the excessive metabolic heat production is the primary cause for dead chicken embryos during late embryonic development. Increasing heat shock protein (HSP) expression and adjusting metabolism are important ways to maintain body homeostasis under heat stress. This study was conducted to investigate the effects of in ovo injection (IOI) of vitamin C (VC) at embryonic age 11th day (E11) on HSP and metabolic genes expression. A total of 320 breeder eggs were randomly divided into normal saline and VC injection groups. We detected plasma VC content and rectal temperature at chick’s age 1st day, and the mRNA levels of HSP and metabolic genes in embryonic livers at E14, 16 and 18, analysed the promoter methylation levels of differentially expressed genes and predicted transcription factors at the promoter regions. The results showed that IOI of VC significantly increased plasma VC content and decreased rectal temperature (P < 0.05). In ovo injection of VC significantly increased heat shock protein 60 (HSP60) and pyruvate dehydrogenase kinase 4 (PDK4) genes expression at E16 and PDK4 and secreted frizzled related protein 1 (SFRP1) at E18 (P < 0.05). At E16, IOI of VC significantly decreased the methylation levels of total CpG sites and −336 CpG site in HSP60 promoter and −1137 CpG site in PDK4 promoter (P < 0.05). Potential binding sites for nuclear factor-1 were found around −389 and −336 CpG sites in HSP60 promoter and potential binding site for specificity protein 1 was found around −1137 CpG site in PDK4 promoter. Our results suggested that IOI of VC increased HSP60, PDK4 and SFRP1 genes expression at E16 and 18, which may be associated with the demethylation in gene promoters. Whether IOI of VC could improve hatchability needs to be further verified by setting uninjection group.
The gut is composed of a single layer of intestinal epithelial cells and plays important roles in the digestion and absorption of nutrients, immune and barrier functions and amino acid metabolism. Weaning stress impairs piglet intestinal epithelium structural and functional integrities, which results in reduced feed intake, growth rates and increased morbidity and mortality. Several measures are needed to maintain swine gut development and growth performance after weaning stress. A large body of evidence indicates that, in weaning piglets, glutamine, a functional amino acid, may improve growth performance and intestinal morphology, reduce oxidative damage, stimulate enterocyte proliferation, modulate cell survival and death and enhance intestinal paracellular permeability. This review focuses on the effects of glutamine on intestinal health in piglets. The aim is to provide evidentiary support for using glutamine as a feed additive to alleviate weaning stress.
The aim of the present study is to use the syndemic framework to investigate the risk of contracting HIV in the US population. Cross-sectional analyses are from The National Health and Nutrition Examination Survey. We extracted and aggregated data on HIV antibody test, socio-demographic characteristics, alcohol use, drug use, depression, sexual behaviours and sexually transmitted diseases from cycle 2009–2010 to 2015–2016. We carried out weighted regression among young adults (20–39 years) and adults (40–59 years) separately. In total, 5230 men and 5794 women aged 20–59 years were included in the present analyses. In total, 0.8% men and 0.2% women were tested HIV-positive. Each increasing HIV risk behaviour was associated with elevated odds of being tested HIV-positive (1.15, 95% CI 1.15–1.15) among young adults and adults (1.61, 95% CI 1.61–1.61). Multi-faceted, community-based interventions are urgently required to reduce the incidence of HIV in the USA.