We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Land-use change for crop production is one of the key drivers of habitat loss and fragmentation and consequently biodiversity loss and change in tropical regions. This may impact biodiversity-regulated ecosystem services; birds are important to crop health regulating services (e.g. seed dispersal, pest control) and disservices (e.g. seed predation, grain herbivory). However, knowledge is limited on how birds use heterogeneous agricultural landscapes and the consequences for spatial distribution and flow of services and disservices. We studied crop and non-crop–habitat associations of birds in forest–agricultural landscapes of the Kilombero Valley, Tanzania. We focused on dietary preference as a key trait impacting bird responses to land-use change, services, and disservices to crops. We surveyed birds across four main habitat types using repeated point counts, recording a total of 148 species. We found that crop habitats supported higher species richness and larger communities of potentially beneficial species to crop health, whereby 34.5% of invertebrate-feeding species were recorded in cropland. We found that habitat heterogeneity within the landscape supports bird functional diversity and that each habitat type supported unique communities of species. Furthermore, the number of species unique to forest habitats increased with increasing forest canopy closure. Our findings suggest that management strategies for maintaining trees and shrubs, and enhancing tree cover within the crop production landscape, can be effective approaches for maintaining bird diversity and services. However, in-depth studies on trade-offs with disservices need further exploration to mitigate negative impacts of birds on crop yields.
The COVID-19 pandemic significantly disrupted schools and learning formats. Children with epilepsy are at-risk for generalized academic difficulties. We investigated the potential impact of COVID-19 on learning in those with epilepsy by comparing achievement on well-established academic measures among school-age children with epilepsy referred prior to the COVID-19 pandemic and those referred during the COVID-19 pandemic.
Participants and Methods:
This study included 466 children [52% male, predominately White (76%), MAge=10.75 years] enrolled in the Pediatric Epilepsy Research Consortium Epilepsy (PERC) Surgery database project who were referred for surgery and seen for neuropsychological testing. Patients were divided into two groups based on a proxy measure of pandemic timing completed by PERC research staff at each site (i.e., “were there any changes to typical in-person administration [of the evaluation] due to COVID?”). 31% of the sample (N = 144) were identified as having testing during the pandemic (i.e., “yes” response), while 69% were identified as having testing done pre-pandemic (i.e., “no” response). Of the 31% who answered yes, 99% of administration changes pertained to in-person testing or other changes, with 1% indicating remote testing. Academic achievement was assessed by performance measures (i.e., word reading, reading comprehension, spelling, math calculations, and math word problems) across several different tests. T-tests compared the two groups on each academic domain. Subsequent analyses examined potential differences in academic achievement among age cohorts that approximately matched grade level [i.e., grade school (ages 5-10), middle school (ages 11-14), and high school (ages 15-18)].
Results:
No significant differences were found between children who underwent an evaluation before the pandemic compared to those assessed during the pandemic based on age norms across academic achievement subtests (all p’s > .34). Similarly, there were no significant differences among age cohorts. The average performance for each age cohort generally fell in the low average range across academic skills. Performance inconsistently varied between age cohorts. The youngest cohort (ages 5-10) scored lower than the other cohorts for sight-word reading, whereas this cohort scored higher than the middle cohort (ages 11-14) for math word problems and reading comprehension. There were no significant differences between the two pandemic groups on demographic variables, intellectual functioning, or epilepsy variables (i.e., age of onset, number of seizure medications, seizure frequency).
Conclusions:
Academic functioning was generally equivalent between children with epilepsy who underwent academic testing as part of a pre-surgical evaluation prior to the pandemic compared to those who received testing during the pandemic. Additionally, academic functioning did not significantly differ between age cohorts. Children with epilepsy may have entered the pandemic with effective academic supports and/or were accustomed to school disruptions given their seizure history. Replication is needed as findings are based on a proxy measure of pandemic timing and the extent to which children experienced in-person, remote, and hybrid learning is unknown. Children tested a year into the pandemic, after receiving instruction through varying educational methods, may score differently than those tested earlier. Future research can address these gaps. Although it is encouraging that academic functioning was not disproportionately impacted during the pandemic in this sample, children with epilepsy are at-risk for generalized academic difficulties and continued monitoring of academic functioning is necessary.
The Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Database Project is a multisite collaborative that includes neuropsychological evaluations of children presenting for epilepsy surgery. There is some evidence for specific neuropsychological phenotypes within epilepsy (Hermann et al, 2016); however, this is less clear in pediatric patients. As a first step, we applied an empirically-based subtyping approach to determine if there were specific profiles using indices from the Wechsler scales [Verbal IQ (VIQ), Nonverbal IQ (NVIQ), Processing Speed Index (PSI), Working Memory Index (WMI)]. We hypothesized that there would be at least four profiles that are distinguished by slow processing speed and poor working memory as well as profiles with significant differences between verbal and nonverbal reasoning abilities.
Participants and Methods:
Our study included 372 children (M=12.1 years SD=4.1; 77.4% White; 48% male) who completed an age-appropriate Wechsler measure, enough to render at least two index scores. Epilepsy characteristics included 84.4% with focal epilepsy (evenly distributed between left and right focus) and 13.5% with generalized or mixed seizure types; mean age of onset = 6.7 years, SD = 4.5; seizure frequency ranged from daily to less than monthly; 53% had structural etiology; 71% had an abnormal MRI; and mean number of antiseizure medications was two. Latent profile analysis was used to identify discrete underlying cognitive profiles based on intellectual functioning. Demographic and epilepsy characteristics were compared among profiles.
Results:
Based on class enumeration procedures, a 3-cluster solution provided the best fit for the data, with profiles characterized by generally Average, Low Average, or Below Average functioning. 32.8% were in the Average profile with mean index scores ranging from 91.7-103.2; 47.6% were in the Low Average profile with mean index ranging from 80.7 to 84.5; and 19.6% were in the Below Average profile with mean index scores ranging from 55.0-63.1. Across all profiles, the lowest mean score was the PSI, followed by WMI. VIQ and NVIQ represented relatively higher scores for all three profiles. Mean discrepancy between indices within a profile was as large as 11.5 IQ points. No demographics or epilepsy characteristics were significantly different across cognitive phenotypes.
Conclusions:
Latent cognitive phenotypes in a pediatric presurgical cohort were differentiated by general level of functioning; however, across profiles, processing speed was consistently the lowest index followed by working memory. These findings across phenotypes suggest a common relative weakness which may result from a global effect of antiseizure medications and/or the widespread impact of seizures on neural networks even in a largely focal epilepsy cohort; similar to adult studies with temporal lobe epilepsy (Hermann et al, 2007). Future work will use latent profile analysis to examine phenotypes across other domains relevant to pediatric epilepsy including attention, naming, motor, and memory functioning. These findings are in line with collaborative efforts towards cognitive phenotyping which is the aim of our PERC Epilepsy Surgery Database Project that has already established one of the largest pediatric epilepsy surgery cohorts.
Children with epilepsy are at greater risk of lower academic achievement than their typically developing peers (Reilly and Neville, 2015). Demographic, social, and neuropsychological factors, such as executive functioning (EF), mediate this relation. While research emphasizes the importance of EF skills for academic achievement among typically developing children (e.g., Best et al., 2011; Spiegel et al., 2021) less is known among children with epilepsy (Ng et al., 2020). The purpose of this study is to examine the influence of EF skills on academic achievement in a nationwide sample of children with epilepsy.
Participants and Methods:
Participants included 427 children with epilepsy (52% male; MAge= 10.71), enrolled in the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Database who had been referred for surgery and underwent neuropsychological testing. Academic achievement was assessed by performance measures (word reading, reading comprehension, spelling, and calculation and word-based mathematics) and parent-rating measures (Adaptive Behavior Assessment System (ABAS) Functional Academics and Child Behavior Checklist (CBCL) School Performance). EF was assessed by verbal fluency measures, sequencing, and planning measures from the Delis Kaplan Executive Function System (DKEFS), NEPSY, and Tower of London test. Rating-based measures of EF included the 'Attention Problems’ subscale from the CBCL and 'Cognitive Regulation’ index from the Behavior Rating Inventory of Executive Function (BRIEF-2). Partial correlations assessed associations between EF predictors and academic achievement, controlling for fullscale IQ (FSIQ; A composite across intelligence tests). Significant predictors of each academic skill or rating were entered into a two-step regression that included FSIQ, demographics, and seizure variables (age of onset, current medications) in the first step with EF predictors in the second step.
Results:
Although zero-order correlations were significant between EF predictors and academic achievement (.29 < r’s < .63 for performance; -.63 < r’s < -.50 for rating measures), partial correlations controlling for FSIQ showed fewer significant relations. For performance-based EF, only letter fluency (DKEFS Letter Fluency) and cognitive flexibility (DKEFS Trails Condition 4) demonstrated significant associations with performance-based academic achievement (r’s > .29). Regression models for performance-based academic achievement indicated that letter fluency (ß = .22, p = .017) and CBCL attention problems (ß = -.21, p =.002) were significant predictors of sight-word reading. Only letter fluency (ß = .23, p =.006) was significant for math calculation. CBCL Attention Problems were a significant predictor of spelling performance (ß = -.21, p = .009) and reading comprehension (ß = -.18, p =.039). CBCL Attention Problems (ß = -.38, p <.001 for ABAS; ß = -.34, p =.002 for CBCL School) and BRIEF-2 Cognitive Regulation difficulties (ß = -.46, p < .001 for ABAS; ß = -.46, p =.013 for CBCL School) were significant predictors of parent-rated ABAS Functional Academics and CBCL School Performance.
Conclusions:
Among a national pediatric epilepsy dataset, performance-based and ratings-based measures of EF predicted performance academic achievement, whereas only ratings-based EF predicted parent-rated academic achievement, due at least in part to shared method variance. These findings suggest that interventions that increase cognitive regulation, reduce symptoms of attention dysfunction, and promote self-generative, flexible thinking, may promote academic achievement among children with epilepsy.
Pediatric patients with frontal lobe epilepsy (FLE) have higher rates of attention deficit hyperactivity disorder (ADHD), as well as executive functioning (EF) and fine motor (FM) challenges. Relations between these constructs have been established in youth with ADHD and are supported by FM and EF skill involvement in frontal-subcortical systems. Still, they are not well understood in pediatric FLE. We hypothesized that poorer FM performance would be related to greater executive dysfunction and ADHD symptomatology in this group.
Participants and Methods:
47 children and adolescents with FLE (AgeM=12.47, SD=5.18; IQM=84.07; SD=17.56; Age of Seizure OnsetM=6.85, SD=4.64; right-handed: n=34; left-handed: n=10; Unclear: n=3) were enrolled in the Pediatric Epilepsy Research Consortium dataset as part of their phase I epilepsy surgical evaluation. Participants were selected if they had unifocal FLE and completed the Lafayette Grooved Pegboard (GP). Seizure lateralization (left-sided: n=19; right-sided: n=26; bilateral: n=2) and localization were established via data (e.g., EEG, MRI) presented at a multidisciplinary team case conference. Patients completed neuropsychological measures of FM, attention, and EF. Parents also completed questionnaires inquiring about their child’s everyday EF and ADHD symptomatology. Correlational analyses were conducted to examine FM, EF, and ADHD relations.
Results:
Dominant hand (DH) manual dexterity (GP) was related to parent-reported EF (Behavior Rating Inventory of Executive Function, Second Edition [BRIEF-2]-Global Executive Composite [GEC]: r(15) =-.70, p<.01, d=1.96). While not statistically significant, medium to large effect sizes were found for GP DH and parent-reported inattention (Behavior Assessment System for Children, Third Edition [BASC-3]-Attention Problems: r(12)=-.39, p=.17, d=.85) and hyperactivity/impulsivity (BASC-3-Hyperactivity: r(11)= -.44, p=.13, d=.98), as well as performance-based attention (Conners Continuous Performance Test, Third Edition -Omission Errors: r(12)=-.35, p=.22, d=.41), working memory (Wechsler Intelligence Scale for Children - Fifth Edition [WISC-V]-Digit Span [DS]: r(19)=.38, p=.09, d=.82) and cognitive flexibility (Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency Category Switching: r(13)=.46, p=.08, d=1.04); this suggests that these relations may exist but that our study was underpowered to detect them. Non-dominant hand (NDH) manual dexterity was related to performance-based working memory (WISC-V-DS: r(19)=.50, p<.01, d=1.12) and cognitive flexibility (D-KEFS-Trails Making Test Number-Letter Switching: r(17)=.64, p<.01, d=1.67). Again, while underpowered, medium to large effect sizes were found for GP NDH and parent-reported EF (BRIEF-2 GEC: r(15) =-.45, p=.07, d=1.01) and performance-based phonemic fluency (D-KEFS-Letter Fluency: r(13)=.31, p=.20, d=.65).
Conclusions:
Our findings suggest that FM, EF, and ADHD are related in youth with FLE; however, these relations appear to vary by skill and hand. We posit that our findings are due in part to the frontal-cerebellar networks given their anatomic proximity between frontal motor areas and the dorsolateral prefrontal cortex - as well as their shared functional involvement in these networks. Future studies should evaluate the predictive validity of initial FM skills for later executive dysfunction and ADHD symptomatology in FLE. If such relations emerge, contributions of early FM interventions on EF development should be examined. Further replication of these findings with a larger sample is warranted.
Major Depressive Disorder (MDD) is one of the most common mental illnesses worldwide and is strongly associated with suicidality. Commonly used treatments for MDD with suicidality include crisis intervention, oral antidepressants (although risk of suicidal behavior is high among non-responders and during the first 10-14 days of the treatment) benzodiazepines and lithium. Although several interventions addressing suicidality exist, only few studies have characterized in detail patients with MDD and suicidality, including treatment, clinical course and outcomes. Patient Characteristics, Validity of Clinical Diagnoses and Outcomes Associated with Suicidality in Inpatients with Symptoms of Depression (OASIS-D)-study is an investigator-initiated trial funded by Janssen-Cilag GmbH.
Objectives
For population 1 out of 3 OASIS-D populations, to assess the sub-population of patients with suicidality and its correlates in hospitalized individuals with MDD.
Methods
The ongoing OASIS-D study consecutively examines hospitalized patients at 8 German psychiatric university hospitals treated as part of routine clinical care. A sub-group of patients with persistent suicidality after >48 hours post-hospitalization are assessed in detail and a sub-group of those are followed for 6 months to assess course and treatment of suicidality associated with MDD. The present analysis focuses on a preplanned interim analysis of the overall hospitalized population with MDD.
Results
Of 2,049 inpatients (age=42.5±15.9 years, females=53.2%), 68.0% had severe MDD without psychosis and 21.2% had moderately severe MDD, with 16.7% having treatment-resistant MDD. Most inpatients referred themselves (49.4%), followed by referrals by outpatient care providers (14.6%), inpatient care providers (9.0%), family/friends (8.5%), and ambulance (6.8%). Of these admissions, 43.1% represented a psychiatric emergency, with suicidality being the reason in 35.9%. Altogether, 72.4% had at least current passive suicidal ideation (SI, lifetime=87.2%), including passive SI (25.1%), active SI without plan (15.5%), active SI with plan (14.2%), and active SI with plan+intent (14.1%), while 11.5% had attempted suicide ≤2 weeks before admission (lifetime=28.7%). Drug-induced mental and behavioral disorders (19.6%) were the most frequent comorbid disorders, followed by personality disorders (8.2%). Upon admission, 64.5% were receiving psychiatric medications, including antidepressants (46.7%), second-generation antipsychotics (23.0%), anxiolytics (11.4%) antiepileptics (6.0%), and lithium (2.8%). Altogether, 9.8% reported nonadherence to medications within 6 months of admission.
Conclusions
In adults admitted for MDD, suicidality was common, representing a psychiatric emergency in 35.9% of patients. Usual-care treatments and outcomes of suicidality in hospitalized adults with MDD require further study.
The present study provides new insight into suitable microsporidian–host associations. It relates regional and continental-wide host specialization in microsporidians infecting amphipods to degraded and recovering habitats across 2 German river catchments. It provides a unique opportunity to infer the persistence of parasites following anthropogenic disturbance and their establishment in restored rivers. Amphipods were collected in 31 sampling sites with differing degradation and restoration gradients. Specimens were morphologically (hosts) and molecularly identified (host and parasites). Amphipod diversity and abundance, microsporidian diversity, host phylogenetic specificity and continental-wide β-specificity were investigated and related to each other and/or environmental variables. Fourteen microsporidian molecular operational taxonomic units (MOTUs), mainly generalist parasites, infecting 6 amphipod MOTUs were detected, expanding the current knowledge on the host range by 17 interactions. There was no difference in microsporidian diversity and host specificity among restored and near-natural streams (Boye) or between those located in urban and rural areas (Kinzig). Similarly, microsporidian diversity was generally not influenced by water parameters. In the Boye catchment, host densities did not influence microsporidian MOTU richness across restored and near-natural sites. High host turnover across the geographical range suggests that neither environmental conditions nor host diversity plays a significant role in the establishment into restored areas. Host diversity and environmental parameters do not indicate the persistence and dispersal of phylogenetic host generalist microsporidians in environments that experienced anthropogenic disturbance. Instead, these might depend on more complex mechanisms such as the production of resistant spores, host switching and host dispersal acting individually or conjointly.
We present an experimental study of the dynamics of shocks generated by the interaction of a double-spot laser in different kinds of targets: simple aluminum foils and foam–aluminum layered targets. The experiment was performed using the Prague PALS iodine laser working at 0.44 μm wavelength and irradiance of a few 1015 W/cm2. Shock breakouts for pure Al and for foam-Al targets have been recorded using time-resolved self-emission diagnostics. Experimental results have been compared with numerical simulations. The shocks originating from two spots move forward and expand radially in the targets, finally colliding in the intermediate region and producing a very strong increase in pressure. This is particularly clear for the case of foam layered targets, where we also observed a delay of shock breakout and a spatial redistribution of the pressure. The influence of the foam layer doped with high-Z (Au) nanoparticles on the shock dynamics was also studied.
In Germany all keepers of livestock are legally required to record animal welfare indicators as part of their on-farm self-assessment. The Association for Technology and Structures in Agriculture (Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL)) has suggested the use of a particular set of animal welfare indicators in their publication Animal welfare indicators: Practical guide – Pigs. The aim of the present study was to evaluate the inter-observer reliability (Inter-OR) and intra-observer reliability (Intra-OR) of these indicators with respect to the welfare of fattening pigs. For the assessment of Inter-OR, three observers evaluated six KTBL animal welfare indicators. The Inter-OR of the indicators was calculated from the results using intra-class correlation coefficients (ICC). ‘Excellent’ Inter-OR results were found for the indicators tail length (ICC 0.89), skin lesions (ICC 0.77) and ear lesions (ICC 0.80). In contrast, the Inter-OR of the indicators tail lesions (ICC 0.46) and faecal soiling (ICC 0.47) were considered to be only ‘fair’ and that of the indicator lameness (ICC 0.36) as ‘poor’. For the evaluation of the Intra-OR, the same three observers assessed the welfare of 162 to 200 fattening pigs using the same welfare indicators in total eight times. Again ICCs, here per indicator and observer, were used to calculate the Intra-OR. The Intra-OR of the indicators faecal soiling (ICC 0.81) and ear lesions (ICC 0.97) lay in the ‘excellent’ range on average. While the Intra-OR of the indicators skin lesions (ICC 0.67), tail length (ICC 0.74) and lameness (ICC 0.60) could still be considered as being ‘good’, the Intra-OR of the indicator tail lesions (ICC 0.52) could only be assessed as being ‘fair’. From these results the significance of the KTBL indicators could be judged as follows: it is possible to use all the chosen indicators apart from the indicator tail lesions as an internal controlling instrument or as part of an internal weak-point analysis as long as the indicators are evaluated by the same person. A comparison of the indicators tail lesions, lameness and faecal soiling when assessed by different observers should be considered critically because the Inter-OR of these three indicators could only be considered as being ‘poor’ to ‘fair’.
This paper provides a summary of recent research connected with the shock ignition (SI) concept of the inertial confinement fusion which was carried out at PALS. In the experiments, Cu planar targets coated with a thin CH layer were used. Two-beam irradiation experiment was applied to investigate the effect of preliminary produced plasma to shock-wave generation. The 1ω or 3ω main beam with a high intensity >1015 W/cm2 generates shock wave, while the other 1ω beam with the intensity below 1014 W/cm2 creates CH pre-plasma simulating the pre-compressed plasma related to SI. Influence of laser wavelength on absorbed energy transfer to shock wave was studied by means of femtosecond interferometry and measuring the crater volume. To characterize the hot electron and ion emission, two-dimensional (2D) Kα-imaging of Cu plasma and grid collector measurements were used. In single 1ω beam experiments energy transport by fast electrons produced by resonant absorption made a significant contribution to shock-wave pressure. However, two-beam experiments with 1ω main beam show that the pre-plasma is strongly degrading the scalelength which leads to decreasing the fast electron energy contribution to shock pressure. In both the single 3ω beam experiments and the two-beam experiments with the 3ω main beam, do not show any clear influence of fast electron transport on shock-wave pressure. The non-monotonic behavior of the scalelength at changing the laser beam focal radius in both presence and absence of pre-plasma reflects the competition of plasma motion and electron heat conduction under the conditions of one-dimensional and 2D plasma expansion at large and small focal radii, respectively.
The experimental study of the plasma projectile acceleration in the laser-induced cavity pressure acceleration (LICPA) scheme is reported. In the experiment performed at the kilojoule PALS laser facility, the parameters of the projectile were measured using interferometry, a streak camera and ion diagnostics, and the measurements were supported by two-dimensional hydrodynamic simulations. It is shown that in the LICPA accelerator with a 200-J laser driver, a 4-μg gold plasma projectile is accelerated to the velocity of 140 km/s with the energetic acceleration efficiency of 15–19% which is significantly higher than those achieved with the commonly used ablative acceleration and the highest among the ones measured so far for any projectiles accelerated to the velocities ≥100 km/s. This achievement opens the possibility of creation and investigation of high-energy-density matter states with the use of moderate-energy lasers and may also have an impact on the development of the impact ignition approach to inertial confinement fusion.
The paper is a continuation of research carried out at Prague Asterix Laser System (PALS) related to the shock ignition (SI) approach in inertial fusion, which was carried out with use of 1ω main laser beam as the main beam generating a shock wave. Two-layer targets were used, consisting of Cu massive planar target coated with a thin polyethylene layer, which, in the case of two-beam irradiation geometry, simulate conditions related to the SI scenario. The investigations presented in this paper are related to the use of 3ω to create ablation pressure for high-power shock wave generation. The interferometric studies of the ablative plasma expansion, complemented by measurements of crater volumes and Kα emission, clearly demonstrate the effect of changing the incident laser intensity due to changing the focal radius on efficiency of laser energy transfer to a shock wave and fast electron emission. The efficiency of the energy transfer increases with the radius of the focused laser beam. The pre-plasma does not significantly change the character of this effect. However, it unambiguously results in the increasing temperature of fast electrons, the total energy of which remains very small (<0.1% of the laser energy). This study shows that the optimal radius from the point of view of 3ω radiation energy transfer to the shock wave is the maximal one used in these experiments and equal to 200 µm that corresponds to the minimal effect of two-dimensional (2D)-expansion. Such a result is typical for the ablation process determined by electron conductivity energy transfer under the conditions of one-dimensional or 2D matter expansion without any appreciable effect due to energy transfer by fast electrons. The 2D simulations based on application of the ALANT-HE code and an analytical model that includes generation and transport of hot electrons has been used to support of experimental data.
The effect of laser intensity on characteristics of the plasma ablated from a low-Z (CH) planar target irradiated by a 250 ps, 0.438 µm laser pulse with the intensity of up to 1016 W/cm2 as well as on parameters of the laser-driven shock generated in the target for various scale-lengths of preformed plasma was investigated at the kilojoule Prague Asterix Laser System (PALS) laser facility. Characteristics of the plasma were measured with the use of 3-frame interferometry, ion diagnostics, an X-ray spectrometer, and Kα imaging. Parameters of the shock generated in a Cl doped CH target by the intense 3ω laser pulse were inferred by numerical hydrodynamic simulations from the measurements of craters produced by the shock in the massive Cu target behind the CH layer. It was found that the pressure of the shock generated in the plastic layer is relatively weakly influenced by the preplasma (the pressure drop due to the preplasma presence is ~10–20%) and at the pulse intensity of ~1016 W/cm2 the maximum pressure reaches ~80–90 Mbar. However, an increase in pressure of the shock with the laser intensity is slower than predicted by theory for a planar shock and the maximum pressure achieved in the experiment is by a factor of ~2 lower than predicted by the theory. Both at the preplasma absence and presence, the laser-to-hot electrons energy conversion efficiency is small, ~1% or below, and the influence of hot electrons on the generated shock is expected to be weak.
This paper aims at investigation of efficiency of an ablative plasma energy transfer into a massive aluminum target using different atomic number ablators. For this reason, several target materials representing a wide range of atomic numbers (Z = 3.5–73) were used. The experiment was carried out at the iodine Prague Asterix Laser System. The laser provided a 250 ps pulse with energy of 130 J at the third harmonic frequency (λ3 = 0.438 μm). To study the plasma stream configurations a four-frame X-ray pinhole camera was used. The electron temperature of the plasma in the near-surface target region was measured by means of an X-ray spectroscopy. The efficiency of the plasma energy transport to the target was determined via the crater volume measurement using the crater replica technique. The experimental results were compared with two-dimensional numerical simulations where the plasma dynamics was based on the one-fluid, two temperature model, including radiation transport in diffusive approximation and ionization kinetics. It was shown that the plasma expansion geometry plays an important role in the ablative plasma energy transfer into the target.
This paper reports on properties of a plasma formed by sequential action of two laser beams on a flat target, simulating the conditions of shock-ignited inertial confinement fusion target exposure. The experiments were performed using planar targets consisting of a massive copper (Cu) plate coated with a thin plastic (CH) layer, which was irradiated by the 1ω PALS laser beam (λ = 1.315 μm) at the energy of 250 J. The intensity of the fixed-energy laser beam was scaled by varying the focal spot radius. To imitate shock ignition conditions, the lower-intensity auxiliary 1ω beam created CH-pre-plasma which was irradiated by the main beam with a delay of 1.2 ns, thus generating a shock wave in the massive part of the target. To study the parameters of the plasma treated by the two-beam irradiation of the targets, a set of various diagnostics was applied, namely: (i) Two-channel polaro-interferometric system irradiated by the femtosecond laser (~40 fs), (ii) spectroscopic measurements in the X-ray range, (iii) two-dimensional (2D)-resolved imaging of the Kα line emission from Cu, (iv) measurements of the ion emission by means of ion collectors, and (v) measurements of the volume of craters produced in a massive target providing information on the efficiency of the laser energy transfer to the shock wave. The 2D numerical simulations have been used to support the interpretation of experimental data. The general conclusion is that the fraction of the main laser beam energy deposited into the massive copper at two-beam irradiation decreases in comparison with the case of pre-plasma. The reason is that the pre-formed and expanding plasma deteriorates the efficiency of the energy transfer from the main laser pulse to a solid part of the targets by means of the fast electrons and the wave of an electron thermal conductivity.