We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Triceps skinfold thickness (TSF) is a surrogate marker of subcutaneous fat. Evidence is limited about the association of sex-specific TSF with the risk of all-cause mortality among maintenance hemodialysis (MHD) patients. We aimed to investigate the longitudinal relationship of TSF with all-cause mortality among MHD patients. A multicenter prospective cohort study was performed in 1034 patients undergoing MHD. The primary outcome was all-cause mortality. Multivariable Cox proportional hazards models were used to evaluate the association of TSF with the risk of mortality. The mean (standard deviation) age of the study population was 54.1 (15.1) years. 599 (57.9%) of the participants were male. The median (interquartile range) of TSF was 9.7 (6.3–13.3 mm) in males and 12.7 (10.0–18.0 mm) in females. Over a median follow up of 4.4 years (interquartile range, 2.4-7.9 years), there were 548 (53.0%) deaths. When TSF was assessed as sex-specific quartiles, compared with those in quartile 1, the adjusted HRs (95%CIs) of all-cause mortality in quartile 2, quartile 3 and quartile 4 were 0.93 (0.73, 1.19), 0.75 (0.58, 0.97) and 0.69 (0.52, 0.92), respectively (P for trend =0.005). Moreover, when analyzed by sex, increased TSF (≥9.7 mm for males and ≥18mm for females) was significantly associated with a reduced risk of all-cause mortality (quartile 3-4 vs. quartile 1-2; HR, 0.70; 95%CI: 0.55, 0.90 in males; quartile 4 vs. Quartile 1-3; HR, 0.69; 95%CI: 0.48, 1.00 in females). In conclusion, high TSF was significantly associated with lower risk of all-cause mortality in MHD patients.
Turbulent flow widely exists in the aerospace field, and it is still challenging to realise the accurate prediction in the numerical simulation. To realise the high-fidelity numerical simulation of compressible turbulent flow, a high-order accurate self-adaptive turbulence eddy simulation (SATES) method is developed on the PHengLEI-HyOrder open-source solver, combining with the high-order accurate weighted compact nonlinear schemes (WCNS). The compressible flow in the subsonic and transonic is numerically simulated, including some typical cases, such as subsonic flow past a circular cylinder and flow past a square cylinder, high-lift configuration DLR-F11, transonic flow around a circular cylinder. The results predicted by the current high-order accurate SATES are in good agreement with the available experimental and numerical data. The present numerical method can also accurately capture the interactions between shock waves and turbulence while accurately simulating flow separation, shear layer instability and large-scale vortex shedding. The results obtained show that the current high-order accurate SATES simulations based on PHengLEI-HyOrder solver can accurately simulate complex turbulent flows with high reliability.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Knowledge of the critical periods of crop–weed competition is crucial for designing weed management strategies in cropping systems. In the Lower Yangtze Valley, China, field experiments were conducted in 2011 and 2012 to study the effect of interference from mixed natural weed populations on cotton growth and yield and to determine the critical period for weed control (CPWC) in direct-seeded cotton. Two treatments were applied: allowing weeds to infest the crop or keeping plots weed-free for increasing periods (0, 1, 2, 4, 6, 8, 10, 12, 14, and 20 wk) after crop emergence. The results show that mixed natural weed infestations led to 35- to 55-cm shorter cotton plants with stem diameters 10 to 13 mm smaller throughout the season, fitting well with modified Gompertz and logistic models, respectively. Season-long competition with weeds reduced the number of fruit branches per plant by 65% to 82%, decreasing boll number per plant by 86% to 96% and single boll weight by approximately 24%. Weed-free seed cotton yields ranged from 2,900 to 3,130 kg ha−1, while yield loss increased with the duration of weed infestation, reaching up to 83% to 96% compared with permanent weed-free plots. Modified Gompertz and logistic models were used to analyze the impact of increasing weed control duration and weed interference on relative seed cotton yield (percentage of season-long weed-free cotton), respectively. Based on a 5% yield loss threshold, the CPWC was found to be from 145 to 994 growing degree days (GDD), corresponding to 14 to 85 d after emergence (DAE). These findings emphasize the importance of implementing effective weed control measures from 14 to 85 DAE in the Lower Yangtze Valley to prevent crop losses exceeding a 5% yield loss threshold.
Machine learning has already shown promising potential in tiled-aperture coherent beam combining (CBC) to achieve versatile advanced applications. By sampling the spatially separated laser array before the combiner and detuning the optical path delays, deep learning techniques are incorporated into filled-aperture CBC to achieve single-step phase control. The neural network is trained with far-field diffractive patterns at the defocus plane to establish one-to-one phase-intensity mapping, and the phase prediction accuracy is significantly enhanced thanks to the strategies of sin-cos loss function and two-layer output of the phase vector that are adopted to resolve the phase discontinuity issue. The results indicate that the trained network can predict phases with improved accuracy, and phase-locking of nine-channel filled-aperture CBC has been numerically demonstrated in a single step with a residual phase of λ/70. To the best of our knowledge, this is the first time that machine learning has been made feasible in filled-aperture CBC laser systems.
This study aimed to develop a predictive tool for identifying individuals with high antibody titers crucial for recruiting COVID-19 convalescent plasma (CCP) donors and to assess the quality and storage changes of CCP. A convenience sample of 110 plasma donors was recruited, of which 75 met the study criteria. Using univariate logistic regression and random forest, 6 significant factors were identified, leading to the development of a nomogram. Receiver operating characteristic curves, calibration plots, and decision curve analysis (DCA) evaluated the nomogram’s discrimination, calibration, and clinical utility. The nomogram indicated that females aged 18 to 26, blood type O, receiving 1 to 2 COVID-19 vaccine doses, experiencing 2 symptoms during infection, and donating plasma 41 to 150 days after symptom onset had higher likelihoods of high antibody titres. Nomogram’s AUC was 0.853 with good calibration. DCA showed clinical benefit within 9% ~ 90% thresholds. CCP quality was qualified, with stable antibody titres over 6 months (P > 0.05). These findings highlight developing predictive tools to identify suitable CCP donors and emphasize the stability of CCP quality over time, suggesting its potential for long-term storage.
This systematic review aims to synthesise findings from randomised, controlled trials and assess the efficacy and safety of radiofrequency ablation in treating allergic rhinitis.
Methods
A thorough search was conducted across PubMed, the Cochrane Library, Embase, Web of Science, China National Knowledge Infrastructure, WanFang, Chinese Scientific Journal, and Chinese Biomedical Literature databases from their inception until October 2023. The primary outcome measure was the total effective rate, with secondary outcomes including adverse events.
Results
This review included 15 randomised, controlled trials involving 1430 patients. The pooled analysis revealed a statistically significant effect on the total effective rate (odds ratio = 3.27, 95 per cent confidence interval = 2.37 to ~4.51). However, no statistical significance was observed in adverse events (odds ratio = 1.18, 95 per cent confidence interval = 0.67 to ~2.08).
Conclusions
Based on the analytical results, radiofrequency ablation emerges as an efficacious and safe treatment modality for allergic rhinitis. Given the constraints posed by a limited sample size, it is imperative that forthcoming clinical trials adhere rigorously to the gold standard of randomised, controlled trials for the purpose of corroborating these conclusions.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 μM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625–2.5 μM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
In the absence of the necessary valley topography, karst depressions are sometimes used to construct conventional impoundments in order to contain tailings. Leakage is a primary concern for such impoundments. The purpose of the current study was to determine the characteristics and barrier performance of laterite mantling karst depressions, using, as an example, the Wujiwatang (WJWT) tailings impoundment, located in the Gejiu mining area, southwestern China. The geotechnical-hydrogeological properties, geochemistry, mineral compositions, and particle shapes of the laterite were investigated by geotechnical techniques, chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the laterite contained poorly sorted particles that covered a wide spectrum of grain sizes (<5 mm to <50 nm), and was unexpectedly categorized as silty clay or silt with a high liquid limit. The continuous gradation and small D90 value helped the laterite achieve saturated hydraulic conductivities in the range of <10–6 cm/s required for impoundment liners. The laterite beneath the tailings impoundment was finer-grained and had a lower permeability than that of the laterite on the depression walls within the same depression. Geochemically and mineralogically, the laterite was classified as true laterite and its major mineralogical constituents were gibbsite and goethite with chlorite occurring in trace amounts. The laterite was dominated by subspherolitic–spherolitic cohesionless grains (concretions) made up of Al, Fe, Ti, and Mn oxides and hydroxides. The laterite did not have plasticity indices in the clay range. Fortunately, slopewash prior to tailings containment selectively transported the finer oxide concretions to the depression floor, creating a natural low-permeability barrier for the WJWT tailings impoundment. This is undoubtedly important for the planning and design of future karst depression-type tailings impoundments around the world.
By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.
For a finite group $G$ of not prime power order, Oliver showed that the obstruction for a finite CW-complex $F$ to be the fixed point set of a contractible finite $G$-CW-complex is determined by the Euler characteristic $\chi (F)$. (He also has similar results for compact Lie group actions.) We show that the analogous problem for $F$ to be the fixed point set of a finite $G$-CW-complex of some given homotopy type is still determined by the Euler characteristic. Using trace maps on $K_0$ [2, 7, 18], we also see that there are interesting roles for the fundamental group and the component structure of the fixed point set.
Smith theory says that the fixed point set of a semi-free action of a group $G$ on a contractible space is ${\mathbb {Z}}_p$-acyclic for any prime factor $p$ of the order of $G$. Jones proved the converse of Smith theory for the case $G$ is a cyclic group acting semi-freely on contractible, finite CW-complexes. We extend the theory to semi-free group actions on finite CW-complexes of given homotopy types, in various settings. In particular, the converse of Smith theory holds if and only if a certain $K$-theoretical obstruction vanishes. We also give some examples that show the geometrical effects of different types of $K$-theoretical obstructions.
Menaquinone-7 (MK-7), a multipotent vitamin K2, possesses a wide range of biological activities, a precise curative effect and excellent safety. A simple and rapid LC-APCI-MS/MS method for the determination of MK-7 in human plasma with single liquid–liquid extraction (LLE) extraction and 4·5-min analysis time has been developed and validated. Four per cent bovine serum albumin (BSA) was used as surrogate matrix for standard curves and endogenous baseline subtraction. This method was reproducible and reliable and was used to analyse of MK-7 in human plasma. The endogenous circadian rhythm and bioavailability of MK-7 were investigated in two randomised single-dose, open, one-way clinical trials (Study I and Study II). A total of five healthy male subjects were enrolled in Study I and 12 healthy male subjects in Study II. Single-dose (1 mg) of MK-7 was given to each subject under fasting condition, and all eligible subjects were given a restricting VK2 diet for 4 d prior to drug administration and during the trial. The experiment results of Study I demonstrated that endogenous MK-7 has no circadian rhythm in individuals. Both studies showed MK-7 are absorbed with peak plasma concentrations at about 6 h after intake and has a very long half-life time.