We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Isotopes of strontium, oxygen, and carbon were analyzed in human tooth enamel from two Postclassic sites in the central Peten lakes region, Guatemala, to examine patterns of mobility and diet during a time of social unrest. Excavations at both sites, Ixlu and Zacpeten, have revealed evidence for purposeful dismemberment and interment of individuals. This study examines a possible shrine surrounded by rows of skulls at Ixlu, and a mass grave of comingled individuals interred at Zacpeten. The interments coincide with a period of conflict and warfare between two dominant polities, Itza and Kowoj. The 14 sampled individuals at Ixlu were young males, six of whom isotopically match the Maya Mountains of central Belize/southeastern Peten. At Zacpeten, isotopic signatures of adults and children (n = 68) suggested that many were either local or came from other parts of the Maya lowlands, but not the Maya Mountains. In the Late Postclassic, the Zacpeten individuals were exhumed, defiled, and deposited in a mass grave, probably by Kowojs. Although temporally and geographically related, the Ixlu and Zacpeten burials represent two distinct cases of ritual violence that reflect the tumultuous political landscape of the Postclassic period.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
The recommended first-line treatment for insomnia is cognitive behavioral therapy for insomnia (CBTi), but access is limited. Telehealth- or internet-delivered CBTi are alternative ways to increase access. To date, these intervention modalities have never been compared within a single study. Further, few studies have examined (a) predictors of response to the different modalities, (b) whether successfully treating insomnia can result in improvement of health-related biomarkers, and (c) mechanisms of change in CBTi. This protocol was designed to compare the three CBTi modalities to each other and a waitlist control for adults aged 50–65 years (N = 100). Participants are randomly assigned to one of four study arms: in-person- (n = 30), telehealth- (n = 30) internet-delivered (n = 30) CBTi, or 12-week waitlist control (n = 10). Outcomes include self-reported insomnia symptom severity, polysomnography, circadian rhythms of activity and core body temperature, blood- and sweat-based biomarkers, cognitive functioning and magnetic resonance imaging.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
To determine the effects of the non-classic psychedelic, ibogaine, on cognitive functioning. Ibogaine is an indole alkaloid derived from the Tabernanthe Iboga plant family, indigenous to Africa, and traditionally used in spiritual and healing ceremonies. Ibogaine has primarily been studied with respect to its clinical efficacy in reducing substance addiction. There are, however, indications that it also may enhance recovery from traumatic experiences. Ibogaine is a Schedule 1 substance in the USA.
ParticipSabants and Methods:
Participants were U.S. Special Operations Veterans who had independently and voluntarily referred themselves for an ibogaine retreat at a specialized clinic outside the USA prior to learning about this observational study. After meeting rigorous screening requirements, 30 participants were enrolled, all endorsing histories of combat and repeated blast exposure, as well as traumatic brain injury. Participants were seen in person pre-treatment, post-treatment, and one-month post-treatment for neuropsychological testing, neuroimaging, and collection of clinical outcome measures. All 30 participants were seen pre- and post-treatment, of whom 27 were also able to return one-month post-treatment.
The neuropsychological battery included the the Hopkins Verbal Learning Test (HVLT), the Brief Visuospatial Memory Test - Revised (BVMT-R), the Wechsler Adult Intelligence Scale - Fourth Edition (WAIS-IV) Working Memory Index (Digit Span and Arithmetic) and Processing Speed Index (Symbol Search and Coding), and the Delis-Kaplan Executive Function System (D-KEFS) tests of Verbal Fluency (VF), Trail Making (TMT), Color Word (CW), and Tower Test (TT). For repeated measures, alternate forms were used whenever possible.
Results:
Repeated-measures ANOVA revealed significant effects of time, with post-treatment improvements across multiple measures including processing speed (WAIS-IV PSI; F(2,25) = 26.957, p < .001), executive functions (CW Conditions 3 and 4: F(1.445,25) = 11.383, p < .001 and F(1.381,25) = 7.687, p = .004, respectively), verbal fluency (VF Condition 3 correct and accuracy: F(2,25) = 6.419, p = .003 and F(2,25) = 153.076, p < .001, respectively), and verbal learning (HVLT Total Recall (alternate forms used at each time point): F(1.563,23) = 6.958, p = .004). Score progression graphs are presented. Performance on all other cognitive measures did not significantly change following treatment.
Conclusions:
To our knowledge, this is the first prospective study examining neuropsychological test performance following ibogaine use at post-treatment and one-month post-treatment time points. Our results indicated that several cognitive domains improved either post-treatment or one-month post-ibogaine treatment, suggesting ibogaine’s therapeutic potential for cognition in the context of traumatic brain injury and mood disorders. Potential explanations include neuroplastic changes, reduction of PTSD and mood-related effects on cognitive functioning, and practice effects. While we found no evidence of negative cognitive consequences for up to one-month post-single-ibogaine treatment, further study of this substance is necessary to clarify its clinical utility and safety parameters.
White matter hyperintensity (WMH) burden is greater, has a frontal-temporal distribution, and is associated with proxies of exposure to repetitive head impacts (RHI) in former American football players. These findings suggest that in the context of RHI, WMH might have unique etiologies that extend beyond those of vascular risk factors and normal aging processes. The objective of this study was to evaluate the correlates of WMH in former elite American football players. We examined markers of amyloid, tau, neurodegeneration, inflammation, axonal injury, and vascular health and their relationships to WMH. A group of age-matched asymptomatic men without a history of RHI was included to determine the specificity of the relationships observed in the former football players.
Participants and Methods:
240 male participants aged 45-74 (60 unexposed asymptomatic men, 60 male former college football players, 120 male former professional football players) underwent semi-structured clinical interviews, magnetic resonance imaging (structural T1, T2 FLAIR, and diffusion tensor imaging), and lumbar puncture to collect cerebrospinal fluid (CSF) biomarkers as part of the DIAGNOSE CTE Research Project. Total WMH lesion volumes (TLV) were estimated using the Lesion Prediction Algorithm from the Lesion Segmentation Toolbox. Structural equation modeling, using Full-Information Maximum Likelihood (FIML) to account for missing values, examined the associations between log-TLV and the following variables: total cortical thickness, whole-brain average fractional anisotropy (FA), CSF amyloid ß42, CSF p-tau181, CSF sTREM2 (a marker of microglial activation), CSF neurofilament light (NfL), and the modified Framingham stroke risk profile (rFSRP). Covariates included age, race, education, APOE z4 carrier status, and evaluation site. Bootstrapped 95% confidence intervals assessed statistical significance. Models were performed separately for football players (college and professional players pooled; n=180) and the unexposed men (n=60). Due to differences in sample size, estimates were compared and were considered different if the percent change in the estimates exceeded 10%.
Results:
In the former football players (mean age=57.2, 34% Black, 29% APOE e4 carrier), reduced cortical thickness (B=-0.25, 95% CI [0.45, -0.08]), lower average FA (B=-0.27, 95% CI [-0.41, -.12]), higher p-tau181 (B=0.17, 95% CI [0.02, 0.43]), and higher rFSRP score (B=0.27, 95% CI [0.08, 0.42]) were associated with greater log-TLV. Compared to the unexposed men, substantial differences in estimates were observed for rFSRP (Bcontrol=0.02, Bfootball=0.27, 994% difference), average FA (Bcontrol=-0.03, Bfootball=-0.27, 802% difference), and p-tau181 (Bcontrol=-0.31, Bfootball=0.17, -155% difference). In the former football players, rFSRP showed a stronger positive association and average FA showed a stronger negative association with WMH compared to unexposed men. The effect of WMH on cortical thickness was similar between the two groups (Bcontrol=-0.27, Bfootball=-0.25, 7% difference).
Conclusions:
These results suggest that the risk factor and biological correlates of WMH differ between former American football players and asymptomatic individuals unexposed to RHI. In addition to vascular risk factors, white matter integrity on DTI showed a stronger relationship with WMH burden in the former football players. FLAIR WMH serves as a promising measure to further investigate the late multifactorial pathologies of RHI.
The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery (WCPCCS) will be held in Washington DC, USA, from Saturday, 26 August, 2023 to Friday, 1 September, 2023, inclusive. The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery will be the largest and most comprehensive scientific meeting dedicated to paediatric and congenital cardiac care ever held. At the time of the writing of this manuscript, The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery has 5,037 registered attendees (and rising) from 117 countries, a truly diverse and international faculty of over 925 individuals from 89 countries, over 2,000 individual abstracts and poster presenters from 101 countries, and a Best Abstract Competition featuring 153 oral abstracts from 34 countries. For information about the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery, please visit the following website: [www.WCPCCS2023.org]. The purpose of this manuscript is to review the activities related to global health and advocacy that will occur at the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery.
Acknowledging the need for urgent change, we wanted to take the opportunity to bring a common voice to the global community and issue the Washington DC WCPCCS Call to Action on Addressing the Global Burden of Pediatric and Congenital Heart Diseases. A copy of this Washington DC WCPCCS Call to Action is provided in the Appendix of this manuscript. This Washington DC WCPCCS Call to Action is an initiative aimed at increasing awareness of the global burden, promoting the development of sustainable care systems, and improving access to high quality and equitable healthcare for children with heart disease as well as adults with congenital heart disease worldwide.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).
We present an overview of the Southern-sky MWA Rapid Two-metre (SMART) pulsar survey that exploits the Murchison Widefield Array’s large field of view and voltage-capture system to survey the sky south of 30$^{\circ}$ in declination for pulsars and fast transients in the 140–170 MHz band. The survey is enabled by the advent of the Phase II MWA’s compact configuration, which offers an enormous efficiency in beam-forming and processing costs, thereby making an all-sky survey of this magnitude tractable with the MWA. Even with the long dwell times employed for the survey (4800 s), data collection can be completed in $<$100 h of telescope time, while still retaining the ability to reach a limiting sensitivity of $\sim$2–3 mJy (at 150 MHz, near zenith), which is effectively 3–5 times deeper than the previous-generation low-frequency southern-sky pulsar survey, completed in the 1990s. Each observation is processed to generate $\sim$5000–8000 tied-array beams that tessellate the full $\sim 610\, {\textrm{deg}^{2}}$ field of view (at 155 MHz), which are then processed to search for pulsars. The voltage-capture recording of the survey also allows a multitude of post hoc processing options including the reprocessing of data for higher time resolution and even exploring image-based techniques for pulsar candidate identification. Due to the substantial computational cost in pulsar searches at low frequencies, the survey data processing is undertaken in multiple passes: in the first pass, a shallow survey is performed, where 10 min of each observation is processed, reaching about one-third of the full-search sensitivity. Here we present the system overview including details of ongoing processing and initial results. Further details including first pulsar discoveries and a census of low-frequency detections are presented in a companion paper. Future plans include deeper searches to reach the full sensitivity and acceleration searches to target binary and millisecond pulsars. Our simulation analysis forecasts $\sim$300 new pulsars upon the completion of full processing. The SMART survey will also generate a complete digital record of the low-frequency sky, which will serve as a valuable reference for future pulsar searches planned with the low-frequency Square Kilometre Array.
As part of surveillance of snail-borne trematodiasis in Knowsley Safari (KS), Prescot, United Kingdom, a collection was made in July 2021 of various planorbid (n = 173) and lymnaeid (n = 218) snails. These were taken from 15 purposely selected freshwater habitats. In the laboratory emergent trematode cercariae, often from single snails, were identified by morphology with a sub-set, of those most accessible, later characterized by cytochrome oxidase subunit 1 (cox1) DNA barcoding. Two schistosomatid cercariae were of special note in the context of human cercarial dermatitis (HCD), Bilharziella polonica emergent from Planorbarius corneus and Trichobilharzia spp. emergent from Ampullacaena balthica. The former schistosomatid was last reported in the United Kingdom over 50 years ago. From cox1 analyses, the latter likely consisted of two taxa, Trichobilharzia anseri, a first report in the United Kingdom, and a hitherto unnamed genetic lineage having some affiliation with Trichobilharzia longicauda. The chronobiology of emergent cercariae from P. corneus was assessed, with the vertical swimming rate of B. polonica measured. We provide a brief risk appraisal of HCD for public activities typically undertaken within KS educational and recreational programmes.
The purpose of this scoping review is two-fold: to assess the literature that quantitatively measures outcomes of mentorship programs designed to support research-focused junior faculty and to identify mentoring strategies that promote diversity within academic medicine mentoring programs.
Methods:
Studies were identified by searching Medline using MESH terms for mentoring and academic medicine. Eligibility criteria included studies focused on junior faculty in research-focused positions, receiving mentorship, in an academic medical center in the USA, with outcomes collected to measure career success (career trajectory, career satisfaction, quality of life, research productivity, leadership positions). Data were abstracted using a standardized data collection form, and best practices were summarized.
Results:
Search terms resulted in 1,842 articles for title and abstract review, with 27 manuscripts meeting inclusion criteria. Two studies focused specifically on women, and four studies focused on junior faculty from racial/ethnic backgrounds underrepresented in medicine. From the initial search, few studies were designed to specifically increase diversity or capture outcomes relevant to promotion within academic medicine. Of those which did, most studies captured the impact on research productivity and career satisfaction. Traditional one-on-one mentorship, structured peer mentorship facilitated by a senior mentor, and peer mentorship in combination with one-on-one mentorship were found to be effective strategies to facilitate research productivity.
Conclusion:
Efforts are needed at the mentee, mentor, and institutional level to provide mentorship to diverse junior faculty on research competencies and career trajectory, create a sense of belonging, and connect junior faculty with institutional resources to support career success.
Enhancing diversity in the scientific workforce is a long-standing issue. This study uses mixed methods to understand the feasibility, impact, and priority of six key strategies to promote diverse and inclusive training and contextualize the six key strategies across Clinical and Translational Science Awards (CTSAs) Program Institutions.
Methods:
Four breakout sessions were held at the NCATS 2020 CTSA Program annual meeting focused on diversity, equity, and inclusion (DEI) efforts. This paper focuses on the breakout session for Enhancing DEI in Translational Science Training Programs. Data were analyzed using a mixed methods convergent approach. The quantitative strand includes the online polling results. The qualitative strand includes the breakout session and the chat box in response to the training presentation.
Results:
Across feasibility, impact, and priority questions, prioritizing representation ranked number 1. Building partnerships ranked number 2 in feasibility and priority, while making it personal ranked number 2 for impact. Across each strategy, rankings supported the qualitative data findings in feasibility through shared experiences, impact in the ability to increase DEI, and priority rankings in comparison to the other strategies. No divergence was found across quantitative and qualitative data findings.
Conclusion:
Findings provide robust support for prioritizing representation as a number one strategy to focus on in training programs. Specifically, this strategy can be operationalized through integration of community representation, diversity advocates, and adopting a holistic approach to recruiting a diverse cadre of scholars into translational science training programs at the national level across CTSAs.
Diversity, equity, and inclusion (DEI) in clinical and translational science (CTS) are paramount to driving innovation and increasing health equity. One important area for improving diversity is among trainees in CTS programs. This paper reports on findings from a special session at the November 2020 Clinical and Translational Science Award (CTSA) national program meeting that focused on advancing diversity and inclusion within CTS training programs.
Methods:
Using qualitative content analysis, we identified approaches brought forth to increase DEI in KL2 career development and other training programs aimed at early-stage CTS investigators, beyond the six strategies put forth to guide the breakout session (prioritizing representation, building partnerships, making it personal, designing program structure, improving through feedback, and winning endorsement). We used an inductive qualitative content analysis approach to identify themes from a transcript of the panel of KL2 program leaders centered on DEI in training programs.
Results:
We identified four themes for advancing DEI within CTS training programs: 1) institutional buy-in; 2) proactive recruitment efforts; 3) an equitable application process; and 4) high-quality, diverse mentorship.
Conclusion:
Implementing these strategies in CTS and other training programs will be an important step for advancing DEI. However, processes need to be established to evaluate the implementation and effectiveness of these strategies through continuous quality improvement, a key component of the CTSA program. Training programs within the CTSA are well-positioned to be leaders in this critical effort to increase the diversity of the scientific workforce.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
In this poster, using the POSYDON code, we present results on binary progenitors of stripped-envelope SNe and their companions. We find that most progenitors are expected to explode, according to typical SN prescriptions (in contrast to single star progenitors). We also show the expected masses and position in the HR diagram of the companions of these SNe at the moment of explosion, allowing us to do a first statistical comparison with the compiled sample of observational detections (or upper limits) on these companions.
Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars ($\epsilon_r\lesssim10^{-4}$), the fraction of magnetic energy in the GRB jet ($\epsilon_B\lesssim2\times10^{-4}$), and the radio emission efficiency of the magnetar remnant ($\epsilon_r\lesssim10^{-3}$). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of $z\sim0.6$. Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.