We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The advent of next-generation telescope facilities brings with it an unprecedented amount of data, and the demand for effective tools to process and classify this information has become increasingly important. This work proposes a novel approach to quantify the radio galaxy morphology, through the development of a series of algorithmic metrics that can quantitatively describe the structure of radio source, and can be applied to radio images in an automatic way. These metrics are intuitive in nature and are inspired by the intrinsic structural differences observed between the existing Fanaroff-Riley (FR) morphology types. The metrics are defined in categories of asymmetry, blurriness, concentration, disorder, and elongation (ABCDE/single-lobe metrics), as well as the asymmetry and angle between lobes (source metrics). We apply these metrics to a sample of 480 sources from the Evolutionary Map of the Universe Pilot Survey (EMU-PS) and 72 well resolved extensively studied sources from An Atlas of DRAGNs, a subset of the revised Third Cambridge Catalogue of Radio Sources (3CRR). We find that these metrics are relatively robust to resolution changes, independent of each other, and measure fundamentally different structural components of radio galaxy lobes. These metrics work particularly well for sources with reasonable signal-to-noise and well separated lobes. We also find that we can recover the original FR classification using probabilistic combinations of our metrics, highlighting the usefulness of our approach for future large data sets from radio sky surveys.
The Bray–Liebhafsky reaction is one of many intricate chemical systems that is known to exhibit periodic behaviour. Although the underlying chemistry is somewhat complicated and involves at least ten chemical species, in a recent work we suggested a reduced two-component model of the reaction involving the concentrations of iodine and iodous acid. Although it is drastically simplified, this reduced system retains enough structure so as to exhibit many of the oscillatory characteristics seen in experimental analyses. Here, we consider the possibility of spatial patterning in a nonuniformly mixed solution. Since many practical demonstrations of chemical oscillations are undertaken using circular containers such as beakers or Petri dishes, we develop both linearized and nonlinear pattern solutions in terms of cylindrical coordinates. These results are complemented by an analysis of the patterning that might be possible within a rectangular domain. The simulations give compelling evidence that spatial patterning may well be feasible in the Bray–Liebhafsky process.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
Diversifying the simplified landscape of corn and soybeans in the Midwest is an emerging priority in both the public and private sectors to reap a suite of climate, social, agronomic, and economic benefits. However, little research has documented the perspectives of farmers, the primary stakeholders in diversification efforts. This preliminary report uses newly collected survey data (n = 725) from farmers in the states of Illinois, Indiana, and Iowa to provide descriptive statistics and tests to understand what farmers in the region think about agricultural diversification, including their perspectives on its benefits, barriers, and opportunities. For the purposes of the study, we define diversification as extended rotations, perennials, horticulture, grazed livestock, and agroforestry practices. We find that a majority or plurality of farmers in the sample believe that diversified systems are superior to non-diversified systems at achieving a range of environmental, agronomic, and economic goals, although many farmers are still forming opinions. Farmers believe that primarily economic barriers stand in the way of diversification, including the lack of affordable land, low short-term returns on investment, and lack of labor. Farmers identified key opportunities to increase diversification through developing processing capacity for local meat and specialty crops, increasing demand for diversified products, and providing more information on returns on investment of diversified systems. Different interventions, however, may be needed to support farmers who are already diversified compared to non-diversified farmers. Building on these initial results, future studies using these data will develop more detailed analyses and recommendations for policymakers, the private sector, and agricultural organizations to support diversification.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.
We provide an assessment of the Infinity Two fusion pilot plant (FPP) baseline plasma physics design. Infinity Two is a four-field period, aspect ratio $A = 10$, quasi-isodynamic stellarator with improved confinement appealing to a max-$J$ approach, elevated plasma density and high magnetic fields ($ \langle B\rangle = 9$ T). Here $J$ denotes the second adiabatic invariant. At the envisioned operating point ($800$ MW deuterium-tritium (DT) fusion), the configuration has robust magnetic surfaces based on magnetohydrodynamic (MHD) equilibrium calculations and is stable to both local and global MHD instabilities. The configuration has excellent confinement properties with small neoclassical transport and low bootstrap current ($|I_{bootstrap}| \sim 2$ kA). Calculations of collisional alpha-particle confinement in a DT FPP scenario show small energy losses to the first wall (${\lt}1.5 \,\%$) and stable energetic particle/Alfvén eigenmodes at high ion density. Low turbulent transport is produced using a combination of density profile control consistent with pellet fueling and reduced stiffness to turbulent transport via three-dimensional shaping. Transport simulations with the T3D-GX-SFINCS code suite with self-consistent turbulent and neoclassical transport predict that the DT fusion power$P_{{fus}}=800$ MW operating point is attainable with high fusion gain ($Q=40$) at volume-averaged electron densities $n_e\approx 2 \times 10^{20}$ m$^{-3}$, below the Sudo density limit. Additional transport calculations show that an ignited ($Q=\infty$) solution is available at slightly higher density ($2.2 \times 10^{20}$ m$^{-3}$) with $P_{{fus}}=1.5$ GW. The magnetic configuration is defined by a magnetic coil set with sufficient room for an island divertor, shielding and blanket solutions with tritium breeding ratios (TBR) above unity. An optimistic estimate for the gas-cooled solid breeder designed helium-cooled pebble bed is TBR $\sim 1.3$. Infinity Two satisfies the physics requirements of a stellarator fusion pilot plant.
The stellar age and mass of galaxies have been suggested as the primary determinants for the dynamical state of galaxies, with environment seemingly playing no or only a very minor role. We use a sample of 77 galaxies at intermediate redshift ($z\sim0.3$) in the Middle-Ages Galaxies Properties with Integral field spectroscopy (MAGPI) Survey to study the subtle impact of environment on galaxy dynamics. We use a combination of statistical techniques (simple and partial correlations and principal component analysis) to isolate the contribution of environment on galaxy dynamics, while explicitly accounting for known factors such as stellar age, star formation histories, and stellar masses. We consider these dynamical parameters: high-order kinematics of the line-of-sight velocity distribution (parametrised by the Gauss-Hermite coefficients $h_3$ and $h_4$), kinematic asymmetries $V_{\textrm{asym}}$ derived using kinemetry, and the observational spin parameter proxy $\lambda_{R_e}$. Of these, the mean $h_4$ is the only parameter found to have a significant correlation with environment as parametrised by group dynamical mass. This correlation exists even after accounting for age and stellar mass trends. We also find that satellite and central galaxies exhibit distinct dynamical behaviours, suggesting they are dynamically distinct classes. Finally, we confirm that variations in the spin parameter $\lambda_{R_e}$ are most strongly (anti-)correlated with age as seen in local studies, and show that this dependence is well-established by $z\sim0.3$.
The magnetohydrodynamic (MHD) equilibrium and stability properties of the Infinity Two fusion pilot plant baseline plasma physics design are presented. The configuration is a four-field period, aspect ratio $A = 10$ quasi-isodynamic stellarator optimised for excellent confinement at elevated density and high magnetic field $B = 9\,T$. Magnetic surfaces exist in the plasma core in vacuum and retain good equilibrium surface integrity from vacuum to an operational $\beta = 1.6 \,\%$, the ratio of the volume average of the plasma and magnetic pressures, corresponding to $800\ \textrm{MW}$ deuterium–tritium fusion operation. Neoclassical calculations show that a self-consistent bootstrap current of the order of ${\sim} 1\ \textrm{kA}$ slightly increases the rotational transform profile by less than 0.001. The configuration has a magnetic well across its entire radius. From vacuum to the operating point, the configuration exhibits good ballooning stability characteristics, exhibits good Mercier stability across most of its minor radius and it is stable against global low-n MHD instabilities up to $\beta = 3.2\,\%$.
Infants who require cardiopulmonary bypass for surgical repair of CHD are at high risk for secondary infections, which cause significant death and disability. The risk of secondary infection is increased by immune dysfunction. The intestinal microbiome calibrates immune function. Infants with CHD have substantial changes in their intestinal microbiome. We performed this scoping review to describe the current understanding of the relationship between the intestinal microbiome and immune function after pediatric cardiac surgery with cardiopulmonary bypass.
Methods:
We searched the PubMed, Cumulative Index to Nursing and Allied Health Literature, Cochrane, and Scopus databases with the assistance of a medical librarian. We included trials that analysed intestinal microbiome composition and immune function after cardiac surgery with cardiopulmonary bypass in infants.
Results:
We found two observational cohorts and two interventional trials describing composition of intestinal microbiome and some measures of immune function after heart surgery with cardiopulmonary bypass in infants. A total of 114 children were analysed. Three trials were exclusively in infants, and one was in older children and infants. All trials found a differential composition of the intestinal microbiome in infants with CHD compared to those without CHD, and one described a robust correlation between composition of the intestinal microbiome with cytokine profile and adverse outcomes.
Conclusions:
Despite robust preclinical data and data from other disease states, there is minimal data about the correlation between immune function and intestinal microbiome composition in infants with CHD after cardiopulmonary bypass.
Vaccines have revolutionised the field of medicine, eradicating and controlling many diseases. Recent pandemic vaccine successes have highlighted the accelerated pace of vaccine development and deployment. Leveraging this momentum, attention has shifted to cancer vaccines and personalised cancer vaccines, aimed at targeting individual tumour-specific abnormalities. The UK, now regarded for its vaccine capabilities, is an ideal nation for pioneering cancer vaccine trials. This article convened experts to share insights and approaches to navigate the challenges of cancer vaccine development with personalised or precision cancer vaccines, as well as fixed vaccines. Emphasising partnership and proactive strategies, this article outlines the ambition to harness national and local system capabilities in the UK; to work in collaboration with potential pharmaceutic partners; and to seize the opportunity to deliver the pace for rapid advances in cancer vaccine technology.
A battery of 32 tests was administered to a sample including 144 Air Force Officer Candidates and 139 Air Cadets. The factor analysis, using Thurstone's complete centroid method and Zimmerman's graphic method of orthogonal rotations, revealed 12 interpretable factors. The non-reasoning factors were interpreted as verbal comprehension, numerical facility, perceptual speed, visualization, and spatial orientation. The factors derived from reasoning tests were identified as general reasoning, logical reasoning, education of perceptual relations, education of conceptual relations, education of conceptual patterns, education of correlates, and symbol substitution. The logical-reasoning factor corresponds to what has been called deduction, but eduction of correlates is perhaps closer to an ability actually to make deductions. The area called induction appears to resolve into three eduction-of-relations factors. Reasoning factors do not appear always to transcend the type of test material used.
Donald Trump’s bid for the 2024 Republican presidential nomination is unique in that no former president since Theodore Roosevelt in 1912 has sought the nomination of their political party, nor has a candidate sought the nomination while facing multiple criminal indictments. With data from previous nomination cycles, we use presidential nominations from 1980 to 2020 to create a forecast for the 2024 Republican primaries. The variables in the equations consist of data from the pre-primary period (e.g., money raised, cash reserves, elite endorsements, and polling results) and a second model with results of the Iowa caucuses and the New Hampshire primary to forecast the remaining primary vote. The models accurately predict Trump’s victory despite the unique nature of his candidacy.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
Type 2 diabetes (T2DM) poses a significant public health challenge, with pronounced disparities in control and outcomes. Social determinants of health (SDoH) significantly contribute to these disparities, affecting healthcare access, neighborhood environments, and social context. We discuss the design, development, and use of an innovative web-based application integrating real-world data (electronic health record and geospatial files), to enhance comprehension of the impact of SDoH on T2 DM health disparities.
Methods:
We identified a patient cohort with diabetes from the institutional Diabetes Registry (N = 67,699) within the Duke University Health System. Patient-level information (demographics, comorbidities, service utilization, laboratory results, and medications) was extracted to Tableau. Neighborhood-level socioeconomic status was assessed via the Area Deprivation Index (ADI), and geospatial files incorporated additional data related to points of interest (i.e., parks/green space). Interactive Tableau dashboards were developed to understand risk and contextual factors affecting diabetes management at the individual, group, neighborhood, and population levels.
Results:
The Tableau-powered digital health tool offers dynamic visualizations, identifying T2DM-related disparities. The dashboard allows for the exploration of contextual factors affecting diabetes management (e.g., food insecurity, built environment) and possesses capabilities to generate targeted patient lists for personalized diabetes care planning.
Conclusion:
As part of a broader health equity initiative, this application meets the needs of a diverse range of users. The interactive dashboard, incorporating clinical, sociodemographic, and environmental factors, enhances understanding at various levels and facilitates targeted interventions to address disparities in diabetes care and outcomes. Ultimately, this transformative approach aims to manage SDoH and improve patient care.
In England in 2021, an estimated 274 000 people were homeless on a given night. It has long been recognised that physical and mental health of people who are homeless is poorer than for people who are housed. There are few peer-reviewed studies to inform health and social care for depression or anxiety among homeless adults in this setting.
Aims
To measure the symptoms of depression and anxiety among adults who are homeless and who have difficulty accessing healthcare, and to describe distribution of symptoms across sociodemographic, social vulnerability and health-related characteristics.
Method
We completed structured questionnaires with 311 adults who were homeless and who had difficulty accessing healthcare in London, UK, between August and December 2021. We measured anxiety and depression symptoms using the 4-item Patient Health Questionnaire (PHQ-4) score. We compared median PHQ-4 scores across strata of the sociodemographic, social vulnerability and health-related characteristics, and tested for associations using the Kruskal–Wallis test.
Results
The median PHQ-4 score was 8 out of 12, and 40.2% had scores suggesting high clinical need. Although PHQ-4 scores were consistently high across a range of socioeconomic, social vulnerability and health-related characteristics, they were positively associated with: young age; food insecurity; recent and historic abuse; joint, bone or muscle problems; and frequency of marijuana use. The most common (60%) barrier to accessing healthcare related to transportation.
Conclusions
Adults who are homeless and have difficulty accessing healthcare have high levels of depression and anxiety symptoms. Our findings support consideration of population-level, multisectoral intervention.
OBJECTIVES/GOALS: Antibiotic treatment sets the stage for intestinal domination by Candida albicanswhich is necessary for development of invasive disease, but the resources driving this bloom remain poorly defined. We sought to determine these factors in order to design novel prophylaxis strategies for reducing gastrointestinal (GI) colonization. METHODS/STUDY POPULATION: We initially developed a generalizable framework, termed metabolic footprinting to determine the metabolites C. albicanspreferentially uses in the mouse GI tract. After identifying the metabolites C. albicansutilizes, we usedin vitro growth assays in the presence and absence of oxygen to validate out metabolomics findings. We next determined if a probiotic E. coli that utilizes oxygen would reduce C. albicanscolonization compared to a mutant E. coli that could not respire oxygen. Finding that oxygen was a necessary resource, we utilized germ-free mice to determine if Clostridiaspp. known to reduce GI oxygen would prevent C. albicanscolonization. Lastly, we sought to see if 5-aminosalicylic acid (5-ASA) could prevent C. albicanscolonization. RESULTS/ANTICIPATED RESULTS: We found that C. albicans preferentially utilizes simple carbohydrates including fructo-oligosaccharides (e.g., 1-kestose), disaccharides (e.g., β-gentiobiose), and alcoholic sugars (e.g., sorbitol) and is able to grow in vitro on minimal media supplemented with either of these nutrients. However, in the hypoxic environment that is found in the “healthy” colon, C. albicans cannot utilize these nutrients. We next found that pre-colonization in a mouse model with a probiotic E. coli significantly reduced C. albicanscolonization, but the mutant E. coli had no effect on colonization. We next showed that Clostridia supplementation restored GI hypoxia and reduced C. albicanscolonization. Remarkably, we found that 5-ASA significantly reduced GI colonization of C. albicans. DISCUSSION/SIGNIFICANCE: We have shown that C. albicans requires oxygen to colonize the GI tract. Importantly, we found that 5-ASA can prevent an antibiotic mediated bloom of C. albicans by restoring GI hypoxia, which warrants additional studies to determine if 5-ASA can be used as an adjunctive prophylactic treatment in high risk patients.