We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Following acquired brain injury (ABI), individuals often experience anxiety and/or depressive symptoms. BrainACT is an adapted form of Acceptance and Commitment Therapy (ACT) tailored to this target group. The current study is a trial-based health-economic evaluation comparing BrainACT to a psychoeducation and relaxation control treatment.
Methods
An economic evaluation from a societal perspective was conducted in the Netherlands alongside a multicenter randomized controlled two-armed parallel trial including 72 participants. A cost-utility and cost-effectiveness analysis was conducted where incremental costs, quality-adjusted life-years (QALYs), and anxiety/depression (Hospital Anxiety and Depression Scale (HADS) score) were collected and presented over a 1-year follow-up period. Bootstrapping, scenario, and subgroup analyses were performed to test the robustness of the results.
Results
The BrainACT arm reported non-significant lower total costs (incremental difference of €−4,881; bootstrap interval €−12,139 to €2,330) combined with significantly decreased anxiety/depression (HADS) (3.2; bootstrap intervals 0.7–5.7). However, the total QALYs were non-significantly lower (−0.008; bootstrap interval −0.060 to 0.042) for BrainACT. The probability of the intervention being cost-effective was 86 percent at a willingness-to-accept threshold of €50,000/QALY. The scenario and subgroup analyses confirmed the robustness of the results.
Conclusion
BrainACT may be a more cost-effective alternative to a psychoeducation and relaxation intervention for anxiety and/or depressive symptoms following ABI. Despite limitations, BrainACT appears to be a promising addition to treatment options in the Netherlands. Further research is needed to validate these findings, and consideration should be given to implementing BrainACT in Dutch clinical settings with ongoing monitoring.
This chapter discusses the human factors foundations of trust, specifically human-automation trust. Trust in automation can be conceptualized as a three-factor model consisting of the human trustor, the automated trustee, and the environment or context. In this model, qualities of the human (such as experience), work with qualities of the robot (such as form) in an environment that also influences the nature of the interaction. Since trust is constantly evolving, time itself is also a facet of trust in human-automation interactions. Measurement of trust is challenging because trust itself is a latent variable, and not directly observable. However, measurement is necessary to ensure trust is appropriately calibrated and there is not a mismatch between the trustors’ expectations, and the trustees’ capabilities. Trust measures include self-report or survey-type measures, behavioral observations, and biological measures.
Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code (IPCCC) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases (ICD-11). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC.
The International Society for Nomenclature of Paediatric and Congenital Heart Disease (ISNPCHD), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature. This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.
The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC, as IPCCC continues to evolve.
We present results on the global and local characterisation of heat transport in homogeneous bubbly flow. Experimental measurements were performed with and without the injection of ${\sim}2.5~\text{mm}$ diameter bubbles (corresponding to bubble Reynolds number $Re_{b}\approx 600$) in a rectangular water column heated from one side and cooled from the other. The gas volume fraction $\unicode[STIX]{x1D6FC}$ was varied in the range 0 %–5 %, and the Rayleigh number $Ra_{H}$ in the range $4.0\times 10^{9}{-}1.2\times 10^{11}$. We find that the global heat transfer is enhanced up to 20 times due to bubble injection. Interestingly, for bubbly flow, for our lowest concentration $\unicode[STIX]{x1D6FC}=0.5\,\%$ onwards, the Nusselt number $\overline{Nu}$ is nearly independent of $Ra_{H}$, and depends solely on the gas volume fraction $\unicode[STIX]{x1D6FC}$. We observe the scaling $\overline{Nu}\,\propto \,\unicode[STIX]{x1D6FC}^{0.45}$, which is suggestive of a diffusive transport mechanism, as found by Alméras et al. (J. Fluid Mech., vol. 776, 2015, pp. 458–474). Through local temperature measurements, we show that the bubbles induce a huge increase in the strength of liquid temperature fluctuations, e.g. by a factor of 200 for $\unicode[STIX]{x1D6FC}=0.9\,\%$. Further, we compare the power spectra of the temperature fluctuations for the single- and two-phase cases. In the single-phase cases, most of the spectral power of the temperature fluctuations is concentrated in the large-scale rolls/motions. However, with the injection of bubbles, we observe intense fluctuations over a wide range of scales, extending up to very high frequencies. Thus, while in the single-phase flow the thermal boundary layers control the heat transport, once the bubbles are injected, the bubble-induced liquid agitation governs the process from a very small bubble concentration onwards. Our findings demonstrate that the mixing induced by high Reynolds number bubbles ($Re_{b}\approx 600$) offers a powerful mechanism for heat transport enhancement in natural convection systems.
Pb-based organometal halide perovskite solar cells have passed the threshold of 20 % power conversion efficiency (PCE). However, the main issues hampering commercialization are toxic Pb contained in these cells and their instability in ambient air. Therefore, great attention is devoted to replace Pb by Sn or Bi, which are less harmful and - in the case of Bi - also expected to yield enhanced stability. In literature, the most efficient hybrid organic-inorganic methylammonium bismuth iodide (MBI) perovskite solar cells reach PCE up to 0.2 %. In this work, we present spin-coated MBI perovskite solar cells and highlight the impact of the concentration of the perovskite solution on the layer morphology and photovoltaic (PV) characteristics. The solar cells exhibit open-circuit voltages of 0.73 V, which is the highest value published for this type of solar cell. The PCE increases from 0.004 % directly after processing to 0.17 % after 48 h of storage in air. 300 h after exposure to air, the cells still yield 56 % of their peak PCE and 84 % of their maximum open-circuit voltage.
Field experiments were conducted in 1997 and 1998 at the Prattville Experiment Field in Prattville, AL and the Wiregrass Substation in Headland, AL to determine if ammonium thiosulfate (ATS) additions to monosodium methanearsonate (MSMA) affects weed control, reduces MSMA-induced cotton injury, lessens the fruiting and maturity delay on cotton caused by MSMA, and lessens MSMA-induced yield reductions in cotton. Treatments were applied before cotton was at the pinhead square stage and the weeds were 5 cm tall. Weeds evaluated were sicklepod, morningglory species, yellow nutsedge, and Texas panicum. ATS additions to MSMA occasionally enhanced control of all weeds 5 to 20%. However, the addition of ATS did not reduce crop injury caused by MSMA, the effects of MSMA on cotton maturity, or yield reductions caused by MSMA.
Field studies were conducted to assess two sulfur-containing additives for use with glyphosate applied postemergence to glyphosate-resistant cotton for the control of sicklepod and yellow nutsedge. Neither diammonium sulfate (AMS) nor ammonium thiosulfate (ATS), both applied at 2.24 kg/ha, increased control of either species. Effective control of both species was dependent on glyphosate (isopropylamine salt) rate alone, with optimum control at 1.26 kg ae/ha. Plant-mapping data further indicated that sulfur-containing additives generally had no effect on either cotton fruiting patterns or yield. However, applying glyphosate at any rate did increase seed cotton yield in 2 of 3 yr vs. no glyphosate. In addition, applying glyphosate at any rate resulted in an increase in the number of bolls vs. no glyphosate in the following plant-mapping responses: total number of bolls per plant, number of abcised bolls per plant, bolls at the top five sympodial nodes, and bolls at positions 1 and 2 on the sympodia. Glyphosate absorption and subsequent translocation, as influenced by the addition of the sulfur-containing additives, was evaluated using radiotracer techniques. Glyphosate absorption after 48 h was 86, 63, and 37% of amount applied in cotton, sicklepod, and yellow nutsedge, respectively. Absorption by sicklepod and yellow nutsedge was not affected by the addition of either of the additives. Absorption by cotton was reduced by ATS but was not affected by AMS. In yellow nutsedge and cotton, glyphosate concentration in the treated area and adjacent tissue was not affected by either additive. A greater portion of glyphosate was translocated away from the treated area in sicklepod with glyphosate plus AMS (32%) than with glyphosate plus ATS (21%). AMS and ATS may be used in glyphosate-resistant cotton without the risk of either crop injury or yield reduction. However, their use for increased control of annual weed species, such as sicklepod and yellow nutsedge, may not be warranted.
We present azimuthal velocity profiles measured in a Taylor–Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of ${\it\eta}=0.716$, an aspect ratio of ${\it\Gamma}=11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. This regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $\mathit{Re}_{S}\sim O(10^{5})$, for both ${\it\Omega}_{i}>{\it\Omega}_{o}>0$ (quasi-Keplerian regime) and ${\it\Omega}_{o}>{\it\Omega}_{i}>0$ (sub-rotating regime), where ${\it\Omega}_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles match the non-vortical laminar Taylor–Couette profile. The deviation from that profile increases as solid-body rotation is approached at fixed $\mathit{Re}_{S}$. Flow super-rotation, an angular velocity greater than those of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that are larger than the torques for the case of laminar Taylor–Couette flow. The quasi-Keplerian profiles are composed of a well-mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor–Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.
Findings from family and twin studies support a genetic contribution to the development of sexual orientation in men. However, previous studies have yielded conflicting evidence for linkage to chromosome Xq28.
Method
We conducted a genome-wide linkage scan on 409 independent pairs of homosexual brothers (908 analyzed individuals in 384 families), by far the largest study of its kind to date.
Results
We identified two regions of linkage: the pericentromeric region on chromosome 8 (maximum two-point LOD = 4.08, maximum multipoint LOD = 2.59), which overlaps with the second strongest region from a previous separate linkage scan of 155 brother pairs; and Xq28 (maximum two-point LOD = 2.99, maximum multipoint LOD = 2.76), which was also implicated in prior research.
Conclusions
Results, especially in the context of past studies, support the existence of genes on pericentromeric chromosome 8 and chromosome Xq28 influencing development of male sexual orientation.
Taylor–Couette flow with independently rotating inner ($i$) and outer ($o$) cylinders is explored numerically and experimentally to determine the effects of the radius ratio $\eta $ on the system response. Numerical simulations reach Reynolds numbers of up to $\mathit{Re}_i=9.5\times 10^3$ and $\mathit{Re}_o=5\times 10^3$, corresponding to Taylor numbers of up to $\mathit{Ta}=10^8$ for four different radius ratios $\eta =r_i/r_o$ between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor–Couette ($\mathrm{T^3C}$) set-up, reach Reynolds numbers of up to $\mathit{Re}_i=2\times 10^6$ and $\mathit{Re}_o=1.5\times 10^6$, corresponding to $\mathit{Ta}=5\times 10^{12}$ for $\eta =0.714\mbox{--}0.909$. Effective scaling laws for the torque $J^{\omega }(\mathit{Ta})$ are found, which for sufficiently large driving $\mathit{Ta}$ are independent of the radius ratio $\eta $. As previously reported for $\eta =0.714$, optimum transport at a non-zero Rossby number $\mathit{Ro}=r_i |\omega _i-\omega _o |/[2(r_o-r_i)\omega _o]$ is found in both experiments and numerics. Here $\mathit{Ro}_{opt}$ is found to depend on the radius ratio and the driving of the system. At a driving in the range between $\mathit{Ta}\sim 3\times 10^{8}$ and $\mathit{Ta}\sim 10^{10}$, $\mathit{Ro}_{opt}$ saturates to an asymptotic $\eta $-dependent value. Theoretical predictions for the asymptotic value of $\mathit{Ro}_{opt}$ are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported.
Analysis of the Dutch national invasive pneumococcal disease (IPD) surveillance data by sex reveals an increase in the incidence of serotype-1 disease in young female adults in The Netherlands after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) in the national immunization schedule. This has led to an overall increase in IPD in women aged 20–45 years, which was not observed in men of the same age. No other differences in serotype shifts possibly induced by the introduction of PCV7 were observed between the sexes in this age group. Serotype 1 is a naturally fluctuating serotype in Europe and it has been associated with disease in young healthy adults before. It remains uncertain whether or not there is an association between the observed increase in serotype-1 disease in young female adults and the implementation of PCV7 in The Netherlands.
To screen biomaterials in a materiomics approach, libraries of materials are produced. Different materials are used, varying from metals and cements, to covalent polymers that can be either premixed or polymerized in situ, to supramolecular systems that can be applied in a modular approach. This chapter describes the generation of such libraries using different kinds of materials and chemistries. Additionally, the advantages and limitations of the application of these different systems/biomaterials in a materiomics approach are discussed.
Introduction
Different synthetic biomaterials are used for many biomedical applications, varying from metals and ceramic cements, to polymers and supramolecular systems. To screen these biomaterials in a materiomics approach, as said above, libraries of materials are produced. Variations in biomaterials are screened as continuous gradients or in a discrete fashion. The properties that are varied and methods used to create variation within these libraries depend on the type of biomaterial. For the hard metal and ceramic-based biomaterials, the surface interaction with tissue is the property of most interest, and therefore properties such as surface roughness and topography are varied. Covalent polymers are diversified using combinatorial chemistry. The dynamic and self-assembling nature of supramolecular systems allows for the development of material libraries using a modular approach by mixing and matching of different compounds modified with supramolecular moieties.
Recent studies have claimed the existence of very massive stars (VMS) up to 300 M⊙ in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 M⊙, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes.
Strongly turbulent Taylor–Couette flow with independently rotating inner and outer cylinders with a radius ratio of is experimentally studied. From global torque measurements, we analyse the dimensionless angular velocity flux as a function of the Taylor number and the angular velocity ratio in the large-Taylor-number regime and well off the inviscid stability borders (Rayleigh lines) for co-rotation and for counter-rotation. We analyse the data with the common power-law ansatz for the dimensionless angular velocity transport flux , with an amplitude and an exponent . The data are consistent with one effective exponent for all , but we discuss a possible dependence in the co- and weakly counter-rotating regimes. The amplitude of the angular velocity flux is measured to be maximal at slight counter-rotation, namely at an angular velocity ratio of , i.e. along the line . This value is theoretically interpreted as the result of a competition between the destabilizing inner cylinder rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation. With the help of laser Doppler anemometry, we provide angular velocity profiles and in particular identify the radial position of the neutral line, defined by for fixed height . For these large values, the ratio , which is close to , is distinguished by a zero angular velocity gradient in the bulk. While for moderate counter-rotation , the neutral line still remains close to the outer cylinder and the probability distribution function of the bulk angular velocity is observed to be monomodal. For stronger counter-rotation the neutral line is pushed inwards towards the inner cylinder; in this regime the probability distribution function of the bulk angular velocity becomes bimodal, reflecting intermittent bursts of turbulent structures beyond the neutral line into the outer flow domain, which otherwise is stabilized by the counter-rotating outer cylinder. Finally, a hypothesis is offered allowing a unifying view and consistent interpretation for all these various results.
Sauropod dinosaurs were typically one magnitude larger than any other living or extinct terrestrial animal. This sheer size of the sauropod leads to scale effects in their biology and physiology that still are inadequately understood. The only remnants of the sauropods are their fossilized bones. These fossilized bones have sustained burial for some hundred million years and thus may have experienced significant diagenetic changes. These diagenetic changes often do not affect bone preservation on the histological level, but may lead to significant alterations of the bone microstructure. Here the influence of diagenesis on the microstructure of fossilized sauropod bones using femur cross section of Brachiosaurus brancai that was excavated in the Tendaguru beds in Tanzania is investigated. The element distribution in this dinosaur bone is studied by a combination of micro-X-ray-fluorescence (μ-XRF) using synchrotron radiation and energy dispersive X-ray analyses (EDX) in the scanning electron microscope. These techniques reveal quantitative values of the element concentration at a macroscopic level combined with qualitative information at high spatial resolution of the distribution of Ca, Co, Cr, V, Pb, U, Sr, Y, and As in the fossil bones. This allows a differentiation between the remnants of the original bone apatite and pore filling minerals and also a visualization of damage, e.g., cracks introduced by diagenetic processes.