We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
American silk moth, Antheraea polyphemus Cramer 1775 (Lepidoptera: Saturniidae), native to North America, has potential significance in sericulture for food consumption and silk production. To date, the phylogenetic relationship and divergence time of A. polyphemus with its Asian relatives remain unknown. To end these issues, two mitochondrial genomes (mitogenomes) of A. polyphemus from the USA and Canada respectively were determined. The mitogenomes of A. polyphemus from the USA and Canada were 15,346 and 15,345 bp in size, respectively, with only two transitions and five indels. The two mitogenomes both encoded typical mitochondrial 37 genes. No tandem repeat elements were identified in the A+T-rich region of A. polyphemus. The mitogenome-based phylogenetic analyses supported the placement of A. polyphemus within the genus Antheraea, and revealed the presence of two clades for eight Antheraea species used: one included A. polyphemus, A. assamensis Helfer, A. formosana Sonan and the other contained A. mylitta Drury, A. frithi Bouvier, A. yamamai Guérin-Méneville, A. proylei Jolly, and A. pernyi Guérin-Méneville. Mitogenome-based divergence time estimation further suggested that the dispersal of A. polyphemus from Asia into North America might have occurred during the Miocene Epoch (18.18 million years ago) across the Berling land bridge. This study reports the mitogenome of A. polyphemus that provides new insights into the phylogenetic relationship among Antheraea species and the origin of A. polyphemus.
Let $\mathcal {D}$ be a Hom-finite, Krull-Schmidt, 2-Calabi-Yau triangulated category with a rigid object R. Let $\Lambda =\operatorname {End}_{\mathcal {D}}R$ be the endomorphism algebra of R. We introduce the notion of mutation of maximal rigid objects in the two-term subcategory $R\ast R[1]$ via exchange triangles, which is shown to be compatible with the mutation of support $\tau $-tilting $\Lambda $-modules. In the case that $\mathcal {D}$ is the cluster category arising from a punctured marked surface, it is shown that the graph of mutations of support $\tau $-tilting $\Lambda $-modules is isomorphic to the graph of flips of certain collections of tagged arcs on the surface, which is moreover proved to be connected. Consequently, the mutation graph of support $\tau $-tilting modules over a skew-gentle algebra is connected. This generalizes one main result in [49].
Coherent combining of several low-energy few-cycle beams offers a reliable and feasible approach to producing few-cycle laser pulses with energies exceeding the multi-joule level. However, time synchronization and carrier-envelope phase difference (ΔCEP) between pulses significantly affect the temporal waveform and intensity of the combined pulse, requiring precise measurement and control. Here, we propose a concise optical method based on the phase retrieval of spectral interference and quadratic function symmetry axis fitting to simultaneously measure the time synchronization and ΔCEP between few-cycle pulses. The control precision of our coherent beam combining system can achieve a time delay stability within 42 as and ΔCEP measurement precision of 40 mrad, enabling a maximum combining efficiency of 98.5%. This method can effectively improve the performance and stability of coherent beam combining systems for few-cycle lasers, which will facilitate the obtaining of high-quality few-cycle lasers with high energy.
The demand for separating and analysing rare target cells is increasing dramatically for vital applications such as cancer treatment and cell-based therapies. However, there remains a grand challenge for high-throughput and label-free segregation of lesion cells with similar sizes. Cancer cells with different invasiveness usually manifest distinct deformability. In this work, we employ a hydrogel microparticle system with similar sizes but varied stiffness to mimic cancer cells and examine in situ their deformation and focusing under microfluidic flow. We first demonstrate the similar focusing behaviour of hydrogel microparticles and cancer cells in confined flow that is dominated by deformability-induced lateral migration. The deformation, orientation and focusing position of hydrogel microparticles in microfluidic flow under different Reynolds numbers are then systematically observed and measured using a high-speed camera. Linear correlations of the Taylor deformation and tilt angle of hydrogel microparticles with the capillary number are revealed, consistent with theoretical predictions. Detailed analysis of the dependence of particle focusing on the flow rate and particle stiffness enables us to identify a linear scaling between the equilibrium focusing position and the major axis of the deformed microparticles, which is uniquely determined by the capillary number. Our findings provide insights into the focusing and dynamics of soft beads, such as cells and hydrogel microparticles, under confined flow, and pave the way for applications including the separation and identification of circulating tumour cells, drug delivery and controlled drug release.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
This study conducts particle-resolved direct numerical simulations to analyse how finite-size spherical particles affect the decay rate of turbulent kinetic energy in non-sustained homogeneous isotropic turbulence. The decaying particle-laden homogeneous isotropic turbulence is generated with two set-ups, i.e. (1) releasing particles into a single-phase decaying homogeneous isotropic turbulence and (2) switching off the driving force of a sustained particle-laden homogeneous isotropic turbulence. With both set-ups, the decay of turbulent kinetic energy follows a power-law when the flow is fully relaxed, similar to their single-phase counterparts. The dependence of the power-law decay exponent $n$ on the particle-to-fluid density ratio, particle size and volume fraction is also investigated, and a predictive model is developed. We find that the presence of heavier particles slows down the long-time power-law decay exponent.
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
Malnutrition significantly hampers wound healing processes. This study aimed to compare the effectiveness of the Global Leadership Initiative on Malnutrition (GLIM) and Subjective Global Assessment (SGA) in diagnosing malnutrition and predicting wound healing in patients with diabetic foot ulcers (DFU). GLIM criteria were evaluated for sensitivity (SE), specificity (SP), positive predictive value, negative predictive value and kappa (κ) against SGA as the reference. Modified Poisson regression model and the DeLong test investigated the association between malnutrition and non-healing ulcers over 6 months. This retrospective cohort study included 398 patients with DFU, with a mean age of 66·3 ± 11·9 years. According to SGA and GLIM criteria, malnutrition rates were 50·8 % and 42·7 %, respectively. GLIM criteria showed a SE of 67·3 % (95 % CI 60·4 %, 73·7 %) and SP of 82·7 % (95 % CI 76·6 %, 87·7 %) in identifying malnutrition, with a positive predictive value of 80·0 % and a negative predictive value of 71·1 % (κ = 0·50) compared with SGA. Multivariate analysis demonstrated that malnutrition, as assessed by SGA, was an independent risk factor for non-healing (relative risk (RR) 1·84, 95 % CI 1·45, 2·34), whereas GLIM criteria were associated with poorer ulcer healing in patients with estimated glomerular filtration rate ≥ 60 ml/min/1·73m2 (RR: 1·46, 95 % CI 1·10, 1·94). SGA demonstrated a superior area under the receiver’s operating characteristic curve for predicting non-healing compared with GLIM criteria (0·70 (0·65–0·75) v. 0·63 (0·58–0·65), P < 0·01). These findings suggest that both nutritional assessment tools effectively identify patients with DFU at increased risk, with SGA showing superior performance in predicting non-healing ulcers.
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
The efficient separation of hexane isomers from the light naphtha fraction is a significant challenge in the petrochemical industry. 5A zeolite adsorbent is used commercially to sieve alkane isomers. In this study, 5A zeolites were synthesized using a low-cost natural clay mineral precursor, i.e. palygorskite (PAL), with the addition of crystallization directing agent (CDA). By varying the mass ratio of CDA/deionized water, 5A zeolites were obtained as CDA-5%, CDA-7.5%, and CDA-10%. All products were submicron particles with an average particle size of 400–800 nm. A sieving test of CDA-induced 5A zeolites was carried out on hexane adsorbates including n-hexane (nHEX), 2-methylpentane (2MP), and 3-methylpentane (3MP). According to vapor-phase batch adsorption experiments, a significant equilibrium amount (0.149 g/g) of nHEX and only 0.0321 g/g 2MP and 0.0416 g/g 3MP were adsorbed on the 5A zeolite product with CDA-5%. The dynamic adsorption performance of 5A zeolite (CDA-5%) was evaluated by breakthrough curves of binary mixtures of nHEX/2MP and nHEX/3MP. Palygorskite 5A (PAL 5A) zeolite achieved maximum dynamic adsorption capacities of nHEX (0.16 g/g in both cases) at 200°C and 1.2 MPa total pressure. This work provided an economic alternative for the synthesis of 5A zeolites using natural clay minerals instead of chemical raw materials.
The construction of organic-inorganic hybrid ferroelectric materials with larger, high-polarity guest molecules intercalated in kaolinite (K) faces difficulties in terms of synthesis and uncertainty of structure-property relationships. The purpose of the present study was to optimize the synthesis method and to determine the mechanism of ferroelectric behavior of kaolinite intercalated with p-aminobenzamide (PABA), with an eye to improving the design of intercalation methods and better utilization of clay-based ferroelectric materials. The K-PABA intercalation compound (chemical formula Al2Si2O5(OH)4∙(PABA)0.7) was synthesized in an autoclave and then characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The experimental results showed that PABA expanded the kaolinite interlayer from 7.2 Å to 14.5 Å, and the orientation of the PABA molecule was ~70° from the plane of the kaolinite layers. The amino group of the PABA molecule was close to the Si sheet. The presence of intermolecular hydrogen bonds between kaolinite and PABA and among PABA molecules caused macro polarization of K-PABA and dipole inversion under the external electric field, resulting in K-PABA ferroelectricity. Simulation calculations using the Cambridge Sequential Total Energy Package (CASTEP) and the ferroelectricity test revealed the optimized intercalation model and possible ferroelectric mechanism.
Among the many techniques used to remove toxic dyes from the environment, layered double hydroxides (LDH) are considered to be especially environmentally friendly, but, this quality may be altered by variations in the octahedral Mg/Al molar ratios in the LDH structure. The aim of the present study was to synthesize environmentally sound LDH for use as an economically viable sorbent for the adsorption of reactive brilliant orange X-GN. Layered double hydroxides with Mg/Al molar ratios of 2:1 and 4:1 were prepared by co-precipitation. The materials obtained were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray fluorescence spectroscopy (XRF), and surface-area analysis. Batch experiments were carried out to investigate the effects of contact time, pH, adsorbent dosage, and initial dye concentration on the adsorption behavior of the reactive brilliant orange X-GN by Mg-Al LDH. The results showed that the optimum pH value for dye adsorption was 3.0, at which the adsorption capacities of the reactive brilliant orange X-GN by the 2:1 LDH and the 4:1 LDH at 298 K were 79.370 mg/g and 83.343 mg/g, respectively. Further analysis of the dye-adsorption kinetics show that they fit the pseudo second-order model well. The adsorption equilibrium data showed that the Langmuir model provided better correlation of the equilibrium data than the Freundlich model. This result indicates that LDH provide specific homogeneous sites where monolayer dye adsorption occurs. The results of XRD and FTIR analyses of LDH before and after the dye adsorption demonstrated that the adsorption mechanisms were ion exchange and coulombic attraction.
The photochemically assisted Fenton reaction (photo-Fenton) is important because it may be particularly effective for the degradation of harmful organic compounds in the environment using solar light. The purpose of the present study was to determine the effectiveness of hydroxy Fe/Al-intercalated montmorillonites (Fe/Al-Mt) as photo-Fenton catalysts. In particular, different Fe/Al molar ratios were of interest as a means to vary catalytic activity. Intercalation was achieved via an ion-exchange method and brilliant orange X-GN was the test compound for photodegradation by hydrogen peroxide (H2O2) under visible-light irradiation (γ < 420 nm) in the presence of Fe/Al-Mt. The Fe/Al-Mt materials obtained were characterized by powder X-ray diffraction, N2 adsorption/desorption, X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopic analysis, and ultraviolet-visible spectroscopy. The decoloration performance of Fe/Al-Mt was investigated using different experimental parameters, including the synthesis method, the Fe/Al molar ratio of the intercalating solution, the catalyst dosage, the H2O2 dosage, and the pH. The results of photo-Fenton reaction showed that the photocatalytic activity of Fe/Al-Mt was enhanced significantly by the extent of hydroxy Al/Fe intercalation. For optimal reaction conditions, 99.92% degradation efficiency of X-GN was achieved after 140 min of reaction. To obtain further information on the visible-light-assisted photo-Fenton process, a high-performance liquid chromatography-mass spectrometry method was applied to indentify the intermediate products and a degradation pathway was proposed.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
Discrepancy between objective and subjective cognitive deficit is common among patients with major depressive disorders (MDDs) and may play a key role in the mechanism linking cognition with recovery of symptom and psychosocial function. This study, therefore, explores the cognitive discrepancy, and its association with the trajectory of symptoms and functioning over a 6-month period.
Methods
We used data from the Prospective Research Observation to Assess Cognition in Treated patients with MDD (PROACT) study, from which 598 patients were included. Cognitive discrepancy scores were computed using a novel methodology, with positive values indicating more subjective than objective deficit (i.e. ‘underestimation’) and negative values indicating more objective than subjective difficulties (i.e. ‘overestimation’). Linear growth curve models were employed to examine the association of the cognitive discrepancy with the trajectory of depressive symptoms, psychosocial function, and quality of life.
Results
About 68% of patients displayed disproportionately more objective than subjective cognitive deficit at baseline, and the mean cognitive discrepancy score was −1.4 (2.7). Overestimation was associated with a faster decrease of HDRS-17 (β = −0.46, p = 0.002) and a faster decrease of psychosocial function in social life (β = −0.13, p = 0.013) and family life (β = −0.12, p = 0.026), and a greater improvement of EQ-5D utility score (β = 0.01, p < 0.001).
Conclusion
We found a lower sensitivity of cognitive deficit at baseline and its decrease was associated with better health outcomes. Our findings have clinical implications of the necessity to assess both subjective and objective cognition for identification and categorization and to incorporate cognitive and psychological therapies for optimized treatment outcomes.
Vladimir Tikhonchuk, Professor Emeritus at Centre Lasers Intenses et Applications, University of Bordeaux, France, and senior researcher at the Extreme Light Infrastructure ERIC, ELI-Beamlines Facility, Czech Republic. His research is in the domain of high energy density physics and nonlinear optics, including inertial confinement fusion (ICF), dynamic processes in laboratory astrophysics, laser–plasma interactions, excitation of parametric instabilities, generation of magnetic and electric fields, acceleration of charged particles and energy transport.
A target benefit plan (TBP) is a collective defined contribution (DC) plan that is growing in popularity in Canada. Similar to DC plans, TBPs have fixed contribution rates, but they also implement pooling of longevity and investment risk. In this paper, we formulate a multi-period model that incorporates two sources of risk – asset risk and labor income risk for active members. We present an optimal investment and retirement benefits schedule for TBP members with a fixed contribution rate. Using Australian data from 1965 to 2018, we evaluate the performance of the optimal TBP scheme and compare it to the optimal DC scheme. By adopting the benefit–investment strategy derived in this paper, we demonstrate the stability of benefit distribution over time for a TBP scheme in this stochastic formulation. To outperform the DC scheme’s benefit payment, careful consideration shall be given to the benefit target in the TBP scheme. A high target may not be achievable, while a low target can impede the accumulation momentum of the fund’s wealth in its early stages. Moreover, a TBP fund’s investment strategy is primarily influenced by the wealth target, with more aggressive investments in risky assets as the wealth target increases. This analysis may shed light on the possible improvements to retirement planning in Australia. Although the results are sensitive to the choice of model parameters, overall, the proposed TBP promotes system stability in various scenarios.
Drag force acting on a particle is vital for the accurate simulation of turbulent multiphase flows, but the robust drag model is still an open issue. Fully resolved direct numerical simulation (DNS) with an immersed boundary method is performed to investigate the drag force on saltating particles in wall turbulence over a sediment bed. Results show that, for saltating particles, the drag force along the particle trajectories cannot be estimated accurately by traditional drag models originally developed for an isolated particle that depends on the particle-wall separation distance or local volume fraction in addition to the particle Reynolds number. The errors between the models and DNS are especially clear during the descending phase of the particles. Through simple theoretical analysis and DNS data fitting, we present a corrected factor using the classical, particle Reynolds number dependent drag force model as the benchmark model. The new drag model, which takes the particle vertical velocity into account, can reasonably predict the mean drag force obtained by DNS along a particle trajectory.