We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate experimentally the turbulent flow through a two-dimensional contraction. Using a water tunnel with an active grid we generate turbulence at Taylor microscale Reynolds number $Re_{\unicode[STIX]{x1D706}}\sim 250$ which is advected through a 2.5 : 1 contraction. Volumetric and time-resolved tomographic particle image velocimetry and shake-the-box velocity measurements are used to characterize the evolution of coherent vortical structures at three streamwise locations upstream of and within the contraction. We confirm the conceptual picture of coherent large-scale vortices being stretched and aligned with the mean rate of strain. This alignment of the vortices with the tunnel centreline is stronger compared to the alignment of vorticity with the large-scale strain observed in numerical simulations of homogeneous turbulence. We judge this by the peak probability magnitudes of these alignments. This result is robust and independent of the grid-rotation protocols. On the other hand, while the pointwise vorticity vector also, to a lesser extent, aligns with the mean strain, it principally remains aligned with the intermediate eigenvector of the local instantaneous strain-rate tensor, as is known in other turbulent flows. These results persist when the distance from the grid to the entrance of the contraction is doubled, showing that modest transverse inhomogeneities do not significantly affect these vortical-orientation results.
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].
Neospora caninum is a coccidian intracellular protozoan capable of infecting a wide range of mammals, although severe disease is mostly reported in dogs and cattle. Innate defences triggered by monocytes/macrophages are key in the pathogenesis of neosporosis, as these cells are first-line defenders against intracellular infections. The aim of this study was to characterize infection and innate responses in macrophages infected with N. caninum using a well-known cell model to study macrophage functions (human monocyte THP-1 cells). Intracellular invasion of live tachyzoites occurred as fast as 4 h (confirmed with immunofluorescence microscopy using N. caninum-specific antibodies). Macrophages infected by N. caninum had increased expression of pro-inflammatory cytokines (TNFα, IL-1β, IL-8, IFNγ). Interestingly, N. caninum induced expression of host-defence peptides (cathelicidins), a mechanism of defence never reported for N. caninum infection in macrophages. The expression of cytokines and cathelicidins in macrophages invaded by N. caninum was mediated by mitogen-activated protein kinase (MEK 1/2). Secretion of such innate factors from N. caninum-infected macrophages reduced parasite internalization and promoted the secretion of pro-inflammatory cytokines in naïve macrophages. We concluded that rapid invasion of macrophages by N. caninum triggered protective innate defence mechanisms against intracellular pathogens.
We present results from numerical simulations conducted to investigate a potential method for realizing the required fusion fuel heating in the fast ignition scheme to achieving inertial confinement fusion. A comparison will be made between collisionless and collisional particle-in-cell simulations of the relaxation of a non-thermal electron beam through the two-stream instability. The results presented demonstrate energy transfer to the plasma ion population from the laser-driven electron beam via the nonlinear wave–wave interaction associated with the two-stream instability. Evidence will also be provided for the effects of preferential damping of competing instabilities such as the Weibel mode found to be detrimental to the ion heating process.
Numerical simulations have been conducted to study the spatial growth rate and emission topology of the cyclotron-maser instability responsible for stellar/planetary auroral magnetospheric radio emission and intense non-thermal radio emission in other astrophysical contexts. These simulations were carried out in an unconstrained geometry, so that the conditions existing within the source region of some natural electron cyclotron masers could be more closely modelled. The results have significant bearing on the radiation propagation and coupling characteristics within the source region of such non-thermal radio emissions.
If an initially mainly rectilinear electron beam is subject to significant magnetic compression, the conservation of the magnetic moment results in the ultimate formation of a horseshoe distribution in phase space. A similar situation occurs where particles are accelerated into the auroral region of the Earth's magnetic dipole. Such a distribution has been shown to be unstable to a cyclotron resonance maser type of instability and it has been postulated that this may be the mechanism required to explain the production in these regions of auroral kilometric radiation (AKR) and also possibly radiation from other astrophysical objects such as stars with a suitable magnetic field configuration. In this paper we describe a laboratory experiment to investigate the evolution of an electron beam subject to a magnetic compression of up to a factor of 30.
The regeneration of cirri was followed in two common intertidal barnacle species, following non-lethal predation by an intertidal teleost. While >50% of damaged Semibalanus balanoides individuals showed some degree of cirral re-growth within 16 days, this level of regeneration was not reached in Chthamalus montagui until 32 days after removal of the cirri. Full re-growth of cirri required at least two moults in both species.
Present day sows, particularly young sows, have smaller fat reserves than they did 10 to 20 years ago (Whittemore, Franklin and Pearce, 1980). Consequently, changes in the sows' body reserves during pregnancy and lactation have become much more critical in evaluating various nutritional strategies. The interpretation of many experiments designed ot investigate the effects of nutrition of the sow would be enhanced if changes in the body composition of the animal could be determined.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.