We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The interaction of helminth infections with type 2 diabetes (T2D) has been a major area of research in the past few years. This paper, therefore, focuses on the systematic review of the effects of helminthic infections on metabolism and immune regulation related to T2D, with mechanisms through which both direct and indirect effects are mediated. Specifically, the possible therapeutic role of helminths in T2D management, probably mediated through the modulation of host metabolic pathways and immune responses, is of special interest. This paper discusses the current possibilities for translating helminth therapy from basic laboratory research to clinical application, as well as existing and future challenges. Although preliminary studies suggest the potential for helminth therapy for T2D patients, their safety and efficacy still need to be confirmed by larger-scale clinical studies.
A novel entomopathogenic nematode (EPN) species, Steinernema tarimense n. sp., was isolated from soil samples collected in a Populus euphratica forest located in Yuli County within the Tarim Basin of Xinjiang, China. Integrated morphological and molecular analyses consistently place S. tarimense n. sp. within the ‘kushidai-clade’. The infective juvenile (IJ) of new species is characterized by a body length of 674–1010 μm, excretory pore located 53–80 μm from anterior end, nerve ring positioned 85–131 μm from anterior end, pharynx base situated 111–162 μm from anterior end, a tail length of 41–56 μm, and the ratios D% = 42.0–66.6, E% = 116.2–184.4, and H% = 25.5–45.1. The first-generation male of the new species is characterized by a curved spicule length of 61–89 μm, gubernaculum length of 41–58 μm, and ratios D% = 36.8–66.2, SW% = 117.0–206.1, and GS% = 54.8–82.0. Additionally, the tail of first-generation female is conoid with a minute mucron. Phylogenetic analyses of ITS, 28S, and mt12S sequences demonstrated that the three isolates of S. tarimense n. sp. are conspecific and form a sister clade to members of the ‘kushidai-clade’ including S. akhursti, S. anantnagense, S. kushidai, and S. populi. Notably, the IJs of the new species exhibited faster development at 25°C compared to other Steinernema species. This represents the first described of an indigenous EPN species from Xinjiang, suggesting its potential as a novel biocontrol agent against local pests.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Neuropsychological disorders, including anxiety, depression, and dementia, are significant public health problems among older adults. While psychotropics are effective treatments, long-term treatment often has adverse side effects(1). Many patients often seek healthy food consumption as an alternative preventive strategy. Dietary fibre has been suggested for many health benefits, including cardiometabolic health and anti-inflammation, which may influence neurological health through the gut-brain axis(2). However, fibre’s role in neuropsychological health outcomes in older people is unclear. This study examined the potential role of dietary fibre intake and consumption of fibre-rich foods in neurological health outcomes in older Australians. We utilised data from the Ageing Study (MAS) of 1,037 participants aged 70–90(3). At baseline, dietary fibre, whole grains, fresh fruit, vegetables, and nuts and legumes consumption was estimated using the Cancer Council of Victoria food frequency questionnaire. The intake amount was further derived into tertiles (T), with T1 in the lower 33rd%tile and T3 in the upper 33rd%tile. Depressive symptoms (Geriatric Depression Scale), anxiety symptoms (Goldberg Anxiety Scale), and psychological distress (Kessler Psychological Distress Scale) were assessed. Linear regression models were used to estimate beta coefficients for the associations cross-sectionally. Incident dementia was defined using diagnostic criteria, clinical assessments, and a consensus panel review. Nine hundred and sixty-three participants were followed up from the baseline (2005) until wave 4 (2011) [median: 5.8 (IQR: 3.1–5.9) years; 97 incident cases). Incident depression was defined as diagnoses by healthcare professionals and treatments for depression. Eight hundred and nine participants were followed up from the baseline (2005) until wave 3 (2009) [median: 3.9 (IQR: 1.9–4.0) years; 109 incident cases). Cox proportional hazard models were used to estimate hazard ratios (95% CIs). All models were adjusted for demographic characteristics, lifestyle factors, and health history. Among 963 participants (mean age: 78.5; 5.8% females) in the cross-sectional analysis, compared with T1, higher vegetable intake was associated with fewer depressive symptoms (T2: β = 0.52; T3: β= −0.53; both p < 0.05), psychological distress (T2: β = −0.59; T3: β = −1.13; both p < 0.05), and anxiety symptoms (T3: β = −0.37; p = 0.03). Combined intake of vegetables and fruit was inversely associated with fewer psychological distress symptoms (T2: β = −0.55; p = 0.06; T3: β = −1.3; p < 0.05). In the highest tertile, dietary fibre was associated with fewer depressive symptoms (T3: β = −0.47; p = 0.04). In the longitudinal analysis, dietary fibre intake was associated with a 43–56% lower risk of incident dementia (T2 vs T1: adj.HR = 0.57; 95% CI: 0.31–1.03; T3 vs T1: adj.HR = 0.44; 95% CI: 0.19–1.01). Intakes of whole grains, fruit, nuts and legumes were not associated with the outcomes assessed. In a cohort of older Australians, dietary fibre intake appeared to be protective in reducing depressive symptoms cross-sectionally and the risk of incident dementia longitudinally. Additionally, vegetable consumption was associated with fewer symptoms related to depression, anxiety, and distress cross-sectionally.
While the cross-sectional relationship between internet gaming disorder (IGD) and depression is well-established, whether IGD predicts future depression remains debated, and the underlying mechanisms are not fully understood. This large-scale, three-wave longitudinal study aimed to clarify the predictive role of IGD in depression and explore the mediating effects of resilience and sleep distress.
Methods
A cohort of 41,215 middle school students from Zigong City was assessed at three time points: November 2021 (T1), November 2022 (T2) and November 2023 (T3). IGD, depression, sleep distress and resilience were measured using standardized questionnaires. Multiple logistic regression was used to examine the associations between baseline IGD and both concurrent and subsequent depression. Mediation analyses were conducted with T1 IGD as the predictor, T2 sleep distress and resilience as serial mediators and T3 depression as the outcome. To test the robustness of the findings, a series of sensitivity analyses were performed. Additionally, sex differences in the mediation pathways were explored.
Results
(1) IGD was independently associated with depression at baseline (T1: adjusted odds ratio [AOR] = 4.76, 95% confidence interval [CI]: 3.79–5.98, p < 0.001), 1 year later (T2: AOR = 1.42, 95% CI: 1.16–1.74, p < 0.001) and 2 years later (T3: AOR = 1.24, 95% CI: 1.01–1.53, p = 0.042); (2) A serial multiple mediation effect of sleep distress and resilience was identified in the relationship between IGD and depression. The mediation ratio was 60.7% in the unadjusted model and 33.3% in the fully adjusted model, accounting for baseline depression, sleep distress, resilience and other covariates. The robustness of our findings was supported by various sensitivity analyses; and (3) Sex differences were observed in the mediating roles of sleep distress and resilience, with the mediation ratio being higher in boys compared to girls.
Conclusions
IGD is a significant predictor of depression in adolescents, with resilience and sleep distress serving as key mediators. Early identification and targeted interventions for IGD may help prevent depression. Intervention strategies should prioritize enhancing resilience and improving sleep quality, particularly among boys at risk.
This paper develops a novel full-state-constrained intelligent adaptive control (FIAC) scheme for a class of uncertain nonlinear systems under full state constraints, unmodeled dynamics and external disturbances. The key point of the proposed scheme is to appropriately suppress and compensate for unmodeled dynamics that are coupled with other states of the system under the conditions of various disturbances and full state constraints. Firstly, to guarantee that the time-varying asymmetric full state constraints are obeyed, a simple and valid nonlinear error transformation method has been proposed, which can simplify the constrained control problem of the system states into a bounded control problem of the transformed states. Secondly, considering the coupling relationship between the unmodeled dynamics and other states of the controlled system such as system states and control inputs, a decoupling approach for coupling uncertainties is introduced. Thereafter, owing to the employed dynamic signal and bias radial basis function neural network (BIAS-RBFNN) improved on traditional RBFNN, the adverse effects of unmodeled dynamics on the controlled system can be suppressed appropriately. Furthermore, the matched and mismatched disturbances are reasonably estimated and circumvented by a mathematical inequality and a disturbance observer, respectively. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed FIAC strategy.
Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particle-in-cell simulations. The evolution of the electron beam polarization is studied based on the Thomas–Bargmann–Michel–Telegdi equation for the transverse and longitudinal self-injection, and the depolarization process is found to be influenced by the injection schemes. In the case of transverse self-injection, as found typically in the bubble regime, the spin precession of the accelerated electrons is mainly influenced by the wakefield. However, in the case of longitudinal injection in the quasi-1D regime (for example, F. Y. Li et al., Phys. Rev. Lett. 110, 135002 (2013)), the direction of electron spin oscillates in the laser field. Since the electrons move around the laser axis, the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored. Finally, an ultra-short electron beam with polarization of $99\%$ can be obtained using longitudinal self-injection.
Limited studies provide direct evidence of Clonorchis sinensis adults in the early stage of gallbladder stone formation. Our current research systematically studied 33 gallbladder stones resembling adult worms and shed light on the definite connection of C. sinensis infection with concomitant cholelithiasis. A total of 33 gallbladder stones resembling adult C. sinensis worms were systematically analysed. Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray energy spectrometry were used to analyse the composition and microstructure. Meanwhile, a histopathological examination of the stone was carried out. The 33 gallbladder stones resembling adult C. sinensis worms included nine calcium carbonate (CaCO3) stones, 12 bilirubinate stones and 12 mixed stones. Clonorchis sinensis eggs were found in 30 cases, including all CaCO3 and mixed stones. Parasite tissues were detected in 12 cases, which were mainly CaCO3 stones or bilirubinate–CaCO3 mixed stones. The outer layer of stones was wrapped with 12.88% calcium salt, as revealed by X-ray energy spectrometry, while surprisingly, many C. sinensis eggs were found in the inner part of these stones. Based on our current findings, we concluded that calcification and packaging occurred after C. sinensis adult entrance into the gallbladder, subsequently leading to the early formation of CaCO3 or bilirubinate–CaCO3 mixed gallbladder stones. This discovery highlights definite evidence for C. sinensis infection causing gallbladder stones.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies, $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$. Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$, the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of $\gamma$ rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of $^{26}\mathrm{Al}$ to $^{60}\mathrm{Fe}$ eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
A new near-infrared direct acceleration mechanism driven by Laguerre–Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum. Three-dimensional simulations show that a 2-μm circularly polarized ${\mathrm{LG}}_p^l$ (p = 0, l = 1, σz = −1) laser can directly manipulate attosecond electron slices in additional dimensions (angular directions) and give them annular structures and angular momentums. These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators, edge-enhancement electron imaging, structured X-ray generation, and analysis and manipulation of nanomaterials.
This study aimed to analyse the differences between underwater continuous drilling and traditional intermittent drilling for attic cholesteatoma.
Methods
The clinical data of 61 patients with attic cholesteatoma who underwent an endoscopic approach procedure were analysed. Forty patients underwent underwater continuous drilling (group A), and 21 patients underwent traditional intermittent drilling (group B).
Results
The operation time was 64.61 ± 12.90 minutes in group A and 79.60 ± 16.81 minutes in group B (p < 0.05). The anaesthesia time was 102.69 ± 17.93 minutes in group A and 119.82 ± 19.28 minutes in group B (p < 0.05). The dry ear time, the hearing improvement rate and the post-operative complications were no different in the two groups.
Conclusion
Group A and group B had no differences in surgical outcome or hearing recovery. However, treatment in the former group resulted in a significantly shortened operation and anaesthesia time.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
The characteristic traits of maize (Zea mays L.) leaves affect light interception and photosynthesis. Measurement or estimation of individual leaf area has been described using discontinuous equations or bell-shaped functions. However, new maize hybrids show different canopy architecture, such as leaf angle in modern maize which is more upright and ear leaf and adjacent leaves which are longer than older hybrids. The original equations and their parameters, which have been used for older maize hybrids and grown at low plant densities, will not accurately represent modern hybrids. Therefore, the aim of this paper was to develop a new empirical equation that captures vertical leaf distribution. To characterize the vertical leaf profile, we conducted a field experiment in Jilin province, Northeast China from 2015 to 2018. Our new equation for the vertical distribution of leaf profile describes leaf length, width or leaf area as a function of leaf rank, using parameters for the maximum value for leaf length, width or area, the leaf rank at which the maximum value is obtained, and the width of the curve. It thus involves one parameter less than the previously used equations. By analysing the characteristics of this new equation, we identified four key leaf ranks (4, 8, 14 and 20) for which leaf parameter values need to be quantified in order to have a good estimation of leaf length, width and area. Together, the method of leaf area estimation proposed here adds versatility for use in modern maize hybrids and simplifies the field measurements by using the four key leaf ranks to estimate vertical leaf distribution in maize canopy instead of all leaf ranks.
Soybean meal is rich in soybean isoflavones, which exhibit antioxidant, anti-inflammatory, antiviral and anticancer functions in humans and animals. This study was conducted to investigate the effects of soybean isoflavones on the growth performance, intestinal morphology and antioxidative properties in pigs. A total of 72 weaned piglets (7.45 ± 0.13 kg; 36 males and 36 females) were allocated into three treatments and fed corn-soybean meal (C-SBM), corn-soy protein concentrate (C-SPC) or C-SPC supplemented with equal levels of the isoflavones found in the C-SBM diet (C-SPC + ISF) for a 72-day trial. Each treatment had six replicates and four piglets per replicate, half male and half female. On day 42, one male pig from each replicate was selected and euthanized to collect intestinal samples. The results showed that compared to pigs fed the C-SPC diet, pigs fed the C-SBM and C-SPC + ISF diets had higher BW on day 72 (P < 0.05); pigs fed the C-SBM diet had significantly higher average daily gain (ADG) during days 14 to 28 (P < 0.05), with C-SPC + ISF being intermediate; pigs fed the C-SBM diet tended to have higher ADG during days 42 to 72 (P = 0.063), while pigs fed the C-SPC + ISF diet had significantly higher ADG during days 42 to 72 (P < 0.05). Moreover, compared to pigs fed the C-SPC diet, pigs fed the C-SBM diet tended to have greater villus height (P = 0.092), while pigs fed the C-SPC + ISF diet had significantly greater villus height (P < 0.05); pigs fed the C-SBM and C-SPC + ISF diets had significantly increased villus height-to-crypt depth ratio (P < 0.05). Compared with the C-SPC diet, dietary C-SPC + ISF tended to increase plasma superoxide dismutase activity on days 28 (P = 0.085) and 42 (P = 0.075) and reduce plasma malondialdehyde (MDA) content on day 42 (P = 0.089), as well as significantly decreased jejunal mucosa MDA content on day 42 (P < 0.05). However, no significant difference in the expression of tight junction genes among the three groups was found (P > 0.05). In conclusion, our results suggest that a long-term exposure to soybean isoflavones enhances the growth performance, protects the intestinal morphology and improves the antioxidative properties in pigs.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.