We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Epigenetic changes are plausible molecular sources of clinical heterogeneity in schizophrenia. A subgroup of schizophrenia patients with elevated inflammatory or immune-dysregulation has been reported by previous studies. However, little is known about epigenetic changes in genes related to immune activation in never-treated first-episode patients with schizophrenia (FES) and its consistency with that in treated long-term ill (LTS) patients.
Methods
In this study, epigenome-wide profiling with a DNA methylation array was applied using blood samples of both FES and LTS patients, as well as their corresponding healthy controls. Non-negative matrix factorization (NMF) and k -means clustering were performed to parse heterogeneity of schizophrenia, and the consistency of subtyping results from two cohorts. was tested.
Results
This study identified a subtype of patients in FES participants (47.5%) that exhibited widespread methylation level alterations of genes enriched in immune cell activity and a significantly higher proportion of neutrophils. This clustering of FES patients was validated in LTS patients, with high correspondence in epigenetic and clinical features across two cohorts
Conclusions
In summary, this study demonstrated a subtype of schizophrenia patients across both FES and LTS cohorts, defined by widespread alterations in methylation profile of genes related to immune function and distinguishing clinical features. This finding illustrates the promise of novel treatment strategies targeting immune dysregulation for a subpopulation of schizophrenia patients.
Floating objects will drift due to the action of surface gravity waves. This drift will depart from that of a perfect Lagrangian tracer due to both viscous effects (non-potential flow) and wave–body interaction (potential flow). We examine the drift of freely floating objects in regular (non-breaking) deep-water wave fields for object sizes that are large enough to cause significant diffraction. Systematic numerical simulations are performed using a hybrid numerical solver, qaleFOAM, which deals with both viscosity and wave–body interaction. For very small objects, the model predicts a wave-induced drift equal to the Stokes drift. For larger objects, the drift is generally greater and increases with object size (we examine object sizes up to $10\,\%$ of the wavelength). The effects of different shapes, sizes and submergence depths and steepnesses are examined. Furthermore, we derive a ‘diffraction-modified Stokes drift’ akin to Stokes (Trans. Camb. Phil. Soc., vol. 8, 1847, pp. 411–455), but based on the combination of incident, diffracted and radiated wave fields, which are based on potential-flow theory and obtained using the boundary element method. This diffraction-modified Stokes drift explains both qualitatively and quantitatively the increase in drift. Generally, round objects do not diffract the wave field significantly and do not experience a significant drift enhancement as a result. For box-shape objects, drift enhancement is greater for larger objects with greater submergence depths (we report an increase of $92\,\%$ for simulations without viscosity and $113\,\%$ with viscosity for a round-cornered box whose size is $10\,\%$ of the wavelength). We identify the specific standing wave pattern that arises near the object because of diffraction as the main cause of the enhanced drift. Viscosity plays a small positive role in the enhanced drift behaviour of large objects, increasing the drift further by approximately $20\,\%$.
Correct prediction of particle transport by surface waves is crucial in many practical applications such as search and rescue or salvage operations and pollution tracking and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017, pp. 364–391) and Pizzo et al. (J. Phys. Oceanogr., vol. 49, no. 4, 2019, pp. 983–992) have indicated transport by deep-water breaking waves is enhanced compared with non-breaking waves. To model particle transport in irregular waves, some of which break, we develop a stochastic differential equation describing both mean particle transport and its uncertainty. The equation combines a Brownian motion, which captures non-breaking drift-diffusion effects, and a compound Poisson process, which captures jumps in particle positions due to breaking. From the corresponding Fokker–Planck equation for the evolution of the probability density function for particle position, we obtain closed-form expressions for its first three moments. We corroborate these predictions with new experiments, in which we track large numbers of particles in irregular breaking waves. For breaking and non-breaking wave fields, our experiments confirm that the variance of the particle position grows linearly with time, in accordance with Taylor's single-particle dispersion theory. For wave fields that include breaking, the compound Poisson process increases the linear growth rate of the mean and variance and introduces a finite skewness of the particle position distribution.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
OBJECTIVES/GOALS: Preeclampsia (PE) is a hypertensive disorder of pregnancy, affecting 5 - 7% of pregnancies worldwide. A major cause of morbidity and mortality, PE is also associated with subsequent adverse health outcomes, including long-term increased risk of cardiovascular disease. The genetics conferring increased risk for PE are incompletely understood. METHODS/STUDY POPULATION: We performed a cross-ancestry, fixed-effects meta-analysis, incorporating both published and unpublished genome-wide association study (GWAS) summary statistics. In addition to publicly available summary statistics from two prior studies, we generated GWAS data from three electronic health record biobanks (BioVU, eMERGE, and PMBB). In total, we utilized data from 359,378 individuals (4,411 cases and 354,967 controls). Leveraging this large-scale biobank data importantly allows for detection of complex factors contributing to the diverse etiology of PE. Cases across cohorts were defined using PE-specific ICD-9/ICD-10 codes and phecodes. Cohorts included pregnant individuals of self-identified non-Hispanic Black, non-Hispanic White, and East Asian ancestry. RESULTS/ANTICIPATED RESULTS: 2 of 20,204,625 loci achieved genome-wide significance (p < 5 × 10–8) when minor allele frequency was limited to common variants (>0.01). The most significant locus was rs138180605 (p = 1.77 × 10–8), located in an intergenic region between FGFR2 and ATE1, both previously associated with breast cancer. The other significant locus was rs137895377 (p = 2.33 × 10–8), located in an intronic region of PLEKHO1. Another 225 loci achieved suggestive significance (p < 1 × 10–5). 203 loci could be mapped to 109 unique genes, some previously associated with related phenotypes such as hypertension. Next steps will focus on functional analyses, including genetically predicted gene expression incorporating placental tissue, followed by construction of a PE polygenic risk score to demonstrate predictive utility of results. DISCUSSION/SIGNIFICANCE: This work has contributed to the limited body of knowledge surrounding maternal genetic susceptibility to PE by identifying several loci warranting further investigation. Further work will expand on these results to improve understanding of genetic factors and clarify clinical risk of disease.
In a large healthcare worker cohort, we quantified the association between behaviors and risk of coronavirus disease 2019 (COVID-19) during different pandemic phases, adjusting for prior infection and vaccination. Individual characteristics, including personal concerns, were associated with these behaviors. Public health messaging should target high-risk populations and behaviors as the pandemic evolves.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
Refreezing of meltwater in firn is a major component of Greenland ice-sheet's mass budget, but in situ observations are rare. Here, we compare the firn density and total ice layer thickness in the upper 15 m of 19 new and 27 previously published firn cores drilled at 15 locations in southwest Greenland (1850–2360 m a.s.l.) between 1989 and 2019. At all sites, ice layer thickness covaries with density over time and space. At the two sites with the earliest observations (1989 and 1998), bulk density increased by 15–18%, in the top 15 m over 28 and 21 years, respectively. However, following the extreme melt in 2012, elevation-detrended density using 30 cores from all sites decreased by 15 kg m−3 a−1 in the top 3.75 m between 2013 and 2019. In contrast, the lowest elevation site's density shows no trend. Thus, temporary build-up in firn pore space and meltwater infiltration capacity is possible despite the long-term increase in Greenland ice-sheet melting.
A goosegrass [Eleusine indica (L.) Gaertn.] population uncontrolled by paraquat (R) in a vegetable production field in St. Clair County, AL, was collected in summer 2019. Research was conducted to assess the level of resistance of the suspected resistant population compared with three populations with no suspected paraquat resistance (S1, S2, and S3). Visual injury at all rating dates and biomass reduction at 28 d after treatment (DAT) of S populations occurred exponentially to increasing paraquat rates. S biotypes were injured more than R at 3 DAT, with biomass recovery at 28 DAT only occurring at rates <0.28 kg ha−1. Plant death or biomass reduction did not occur for any rate at any date for R. Paraquat rates that induced 50% or 90% injury or reduced biomass 50% or 90% compared with the non-treated (I50 or I90, respectively) ranged from 10 to 124 times higher I50 for R compared with S and 54 to 116 times higher I90 for R compared with S biotypes. These data confirm a paraquat-resistant E. indica biotype in Alabama, providing additional germplasm for study of resistance to photosystem I electron-diverting (PSI-ED) resistance mechanisms.
Although prenatal exposure to high ambient temperatures were reported to be associated with preterm birth, limited research assessed the impact of weather-related extreme heat events (EHE) on birthweight, particularly by trimester. We, therefore, investigated the impact of prenatal EHE on birthweight among term babies (tLBW) by trimester and birthweight percentile. We conducted a population-based case–control study on singleton live births at 38–42 gestational weeks in New York State (NYS) by linking weather data with NYS birth certificates. A total of 22,615 cases were identified as birthweight <2500 gram, and a random sample of 139,168 normal birthweight controls was included. EHE was defined as three consecutive days with the maximum temperatures of ≥32.2 °C/90 °F (EHE90) and two consecutive days of temperatures ≥97th percentile (EHE97) based on the distribution of the maximum temperature for the season and region. We estimated odds ratios (ORs) and 95% confidence intervals (95% CI) with multivariable unconditional logistic regression, controlling for confounders. Overall exposure to EHE97 for 2 d was associated with tLBW (OR 1.05; 95% CI 1.02, 1.09); however, the strongest associations were only observed in the first trimester for both heat indicators, especially when exposure was ≥3 d (ORs ranged: 1.06–1.13). EHE in the first trimester was associated with significant reduction in mean birthweight from 26.78 gram (EHE90) to 36.25 gram (EHE97), which mainly affected the 40th and 60th birthweight percentiles. Findings revealed associations between multiple heat indicators and tLBW, where the impact was consistently strongest in the first trimester.
Palaeoscolecid worms are widespread in the Palaeozoic period, and are of key importance to understanding the emergence of moulting animals (superphylum Ecdysozoa). However, palaeoscolecids lack a diagnostic set of morphological characters, and as such are unlikely to form a natural (monophyletic) group. Consequently, detailed anatomical study of individual taxa is necessary in order to evaluate the phylogenetic significance of palaeoscolecids. New specimens of Mafangscolex from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Kunming, China, provide the first detailed account of a proboscis in Palaeoscoelcida sensu stricto, a core group of palaeoscolecids characterized by having a tessellating scleritome of phosphatic plates and platelets. The eversible mouthparts of Mafangscolex comprise an armoured, hexaradially symmetrical introvert, a ring of coronal spines and quincuncially arranged pharyngeal armature, with a range of tooth morphologies. Taken together, this configuration strikingly resembles the proboscis arrangement inferred for the ancestral ecdysozoan. The six-fold symmetry represents an important difference from the pentaradial priapulan proboscis. The retention of key aspects of the ancestral ecdysozoan body plan suggests that palaeoscolecids represent a useful window on the earliest stages of ecdysozoan evolution.
We use the results of a supernova light-curve population synthesis to predict the range of possible supernova light curves arising from a population of single-star progenitors that lead to type IIP supernovae. We calculate multiple models varying the initial mass, explosion energy, nickel mass and nickel mixing and then compare these to type IIP supernovae with detailed light curve data and pre-explosion imaging progenitor constraints. Where a good fit is obtained to observations, we are able to achieve initial progenitor and nickel mass estimates from the supernova lightcurve that are comparable in precision to those obtained from progenitor imaging. For 2 of the 11 IIP supernovae considered our fits are poor, indicating that more progenitor models should be included in our synthesis or that our assumptions, regarding factors such as stellar mass loss rates or the rapid final stages of stellar evolution, may need to be revisited in certain cases. Using the results of our analysis we are able to show that most of the type IIP supernovae have an explosion energy of the order of log(Eexp/ergs) = 50.52 ± 0.10 and that both the amount of nickel in the supernovae and the amount of mixing may have a dependence on initial progenitor mass.
We present results of a supernova lightcurve population synthesis, predicting the range of possible supernova lightcurves arising from a population of progenitor stars that include interacting binary systems. We show that the known diversity of supernova lightcurves can be interpreted as arising from binary interactions. Given detailed models of the progenitor stars, we are able to the determine what parameters within these stars determine the shape of their supernova lightcurve. The primary factors are the mass of supernova ejecta and the mass of hydrogen in the final progenitor. We find that there is a continuum of lightcurve behaviour from type IIP, IIL, to IIb supernovae related to the range of hydrogen and ejecta masses. Most type IIb supernovae arise from a relatively narrow range of initial masses from 10 to 15 M⊙. We also find a few distinct lightcurves that are the result of stellar mergers.
This paper presents a comprehensive investigation into flow past a circular cylinder where compressibility and rarefaction effects play an important role. The study focuses on steady subsonic flow in the Reynolds-number range 0.1–45. Rarefaction, or non-equilibrium, effects in the slip and early transition regime are accounted for using the method of moments and results are compared to data from kinetic theory obtained from the direct simulation Monte Carlo method. Solutions obtained for incompressible continuum flow serve as a baseline to examine non-equilibrium effects on the flow features. For creeping flow, where the Reynolds number is less than unity, the drag coefficient predicted by the moment equations is in good agreement with kinetic theory for Knudsen numbers less than one. When flow separation occurs, we show that the effects of rarefaction and velocity slip delay flow separation and will reduce the size of the vortices downstream of the cylinder. When the Knudsen number is above 0.028, the vortex length shows an initial increase with the Reynolds number, as observed in the standard no-slip continuum regime. However, once the Reynolds number exceeds a critical value, the size of the downstream vortices decreases with increasing Reynolds number until they disappear. An existence criterion, which identifies the limits for the presence of the vortices, is proposed. The flow physics around the cylinder is further analysed in terms of velocity slip, pressure and skin friction coefficients, which highlights that viscous, rarefaction and compressibility effects all play a complex role. We also show that the local Knudsen number, which indicates the state of the gas around the cylinder, can differ significantly from its free-stream value and it is essential that computational studies of subsonic gas flows in the slip and early transition regime are able to account for these strong non-equilibrium effects.
High-energy electron radiography (HEER) has been proposed for time-resolved imaging of materials, high-energy density matter, and for inertial confinement fusion. The areal-density resolution, determined by the image intensity information is critical for these types of diagnostics. Preliminary experimental studies for different materials with the same thickness and the same areal-density target have been imaged and analyzed. Although there are some discrepancies between experimental and theory analysis, the results show that the density distribution can indeed be attained from HEER. The reason for the discrepancies has been investigated and indicates the importance of the uniformity in the transverse distribution beam illuminating the target. Furthermore, the method for generating a uniform transverse distribution beam using octupole magnets was studied and verified by simulations. The simulations also confirm that the octupole field does not affect the angle-position correlation in the center part beam, a critical requirement for the imaging lens. A more practical method for HEER using collimators and octupoles for generating more uniform beams is also described. Detailed experimental results and simulation studies are presented in this paper.
This paper presents a 27Al and 29Si MAS NMR study of K-feldspars and demonstrates that the spectra are sensitive to variations in the state of Al,Si order. For synthetically annealed samples, the results are in agreement with previous IR spectroscopy (Harris et al., 1989) and demonstrate that Al,Si rearrangement continues after the samples have become monoclinic as determined by powder XRD. NMR methods provide a significantly improved picture of the state of local Al,Si order in such samples. For triclinic samples, measures of the state of Al,Si order (M1 and M2 of 27Al spectra and M2 of 29Si spectra) correlate well with site occupancies determined by powder XRD, but for the monoclinic samples the NMR parameters continue to change whereas the XRD parameters do not. Interpretations based on the NMR results for the synthetically disordered samples are consistent with 1-step disordering, as observed by XRD. 27Al and 29Si MAS NMR is likely to be a useful tool for probing the state of local Al,Si order in a wide variety of natural samples.
It was reported that high blood cholesterol levels increased the susceptibility to mitochondrial dysfunction. This study hypothesized that the gestational hypercholesterolemia (HC) could induce the mitochondrial dysfunction in term human placenta. The eligible pregnant women were recruited from Xuanwu Hospital in Beijing during their first prenatal visit (before their 10th week of pregnancy). In total, 19 pregnant women whose serum total cholesterol levels were higher than 7.25 mm at third trimester (measured at 36–38 weeks) were selected as gestational HC. Other 19 pregnant women with normal cholesterol level matched with age, pre-gestational body mass index, and the neonatal gender were included as the control group. Full-term placenta samples were collected. The mitochondrial DNA (mtDNA) copy number, messenger RNA (mRNA) expression of cytochrome c oxidase subunit I, adenosine triphosphate monophosphatase 6 (ATP6ase), citrate synthase, peroxisome proliferator-activated receptor-γ (PPARγ) co-activator 1α, PPARγ co-activator 1β and estrogen-related receptor-α, and the activity of mitochondrial respiratory chain enzyme complex were measured. Pregnancy outcomes were obtained by extraction from medical records and the labor ward register. The results showed that only placental mtDNA copy number and mRNA expression of ATP6ase were significantly decreased in HC group. No significant differences were detected of other measurements between the two groups. These findings indicated that gestational HC might not induce the damage of placental function seriously.
This paper reports the measurement of the energy loss of protons at the energy of 100 keV penetrating a partially ionized hydrogen plasma. The plasma of ne ≈ 1015–16 cm−3; Te ≈ 1–2 eV and lifetime of about 8 µs is created by the hydrogen gas discharge. The experimental results show an increase of a factor of 2.8 in the energy loss, which are in good agreement with the Bethe, Standard Stopping Model, Li–Petrasso and Vlasov models’ predictions within the error limit. The Bethe–Bloch Coulomb logarithm term is found to increase by a factor of 4.0 for free electrons as compared with the situation where bound electrons prevail. The potential application of protons energy loss for diagnosing the electron density in plasma is proposed too.
The influence of different inclusion levels of a biologically active peptide derived from soybeans by enzymatic hydrolysis, on growth performance, foot pad lesions and carcass characteristics in broilers were examined in this study. Starter (1 to 21 d) and finisher (22 to 42 d) diets, based on maize and soybean meal, were subjected to seven inclusion levels of a commercial soybean bioactive peptide (SBP) product (Fortide, Chengdu Mytech Biotech Co. Ltd., Chengdu, Sichuan, China) at 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg of diet. All diets were equivalent in respect of energy density, digestible amino acids and other nutrients. A total of 840, one-day-old male broilers (Ross 308) were allocated to 42 pens (20 birds/pen), which were randomly assigned to seven dietary treatments. During the starter period, there was no significant effect of SBP on weight gain and feed intake of the birds. However, a significant (P < 0.05) effect of SBP was observed for the feed conversion ratio (FCR), with SBP inclusion at 3.0 g/kg and above showing lower (P < 0.05) FCR values compared to the diet with no SBP. No effect of SBP was observed for weight gain and feed intake over the whole trial period. However, SBP inclusion tended (P = 0.06) to influence the FCR of birds. Increasing SBP inclusion level resulted in gradual decrease in FCR values, with SBP inclusion at 5.0 and 6.0 g/kg showing lower FCR values compared to the diet with no SBP. Overall, the present study suggests that dietary supplementation of SBP in broiler diets has the potential to improve FCR and to be used as a novel functional protein in poultry diets.
The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.