We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
Plastics pollute all environmental compartments because of human activities and mismanagement. Public perceptions and knowledge about plastic pollution differ among individuals and across different jurisdictions. Targeted survey-based research tools can help measure consumer awareness about the impacts of mismanaged plastics and help identify trends and solutions to reduce plastic use and plastic pollution. This review primarily focused on survey-based research from presenters at the scientific track session TS-2.15 Plastic Pulse of the Public at the 7th International Marine Debris Conference (www.7imdc.org) and supplemented by contemporary literature. Survey-based research helps provide new insights about public opinions related to the pervasiveness of plastic pollution. This review includes results about consumer use and perceptions of plastic pollution impacts from diverse studies from nine countries including Ghana, Kenya, Bangladesh, Pakistan, United States, Canada, Norway, Germany, and United Kingdom. Overwhelmingly, public perceptions and consumer awareness of the negative impacts of plastic pollution were extremely high, regardless of geographic location. Awareness about the environmental impacts of plastic waste and plastic pollution was highest within younger, white, female, and well-educated demographic groups. However, differences were observed in public attitudes toward willingness to pay for sustainable alternatives, end-of-life plastic uses, unintended consequences, recycling, and mismanagement.
Background: This post hoc analysis of the PROMISE-2 data provides an assessment of the total preventive migraine efficacy of eptinezumab over 24 weeks in patients with a dual diagnosis of chronic migraine (CM) and medication overuse headache (MOH). Methods: PROMISE-2 was a double-blind, placebo-controlled, phase 3 study of eptinezumab (NCT02974153) over 24 weeks. Endpoints analyzed here include changes in MMDs, changes in monthly days of AHM use (total and class-specific), percentage of patients below thresholds for CM and MOH, and assessments patient-reported outcomes (PROs). Results: 40.2% patients with CM also had a diagnosis of MOH at baseline. Mean changes from baseline in MMDs during Weeks 1–12 were -8.4 and -8.6 in eptinezumab 100 mg and 300 mg treatment groups, respectively (vs 16.7 at baseline), compared with -5.4 in the placebo group (P<0.0001 vs placebo for both doses). Total monthly AHM use also decreased with eptinezumab. For all 24 weeks, 51.1% (100 mg) and 54.4% (300 mg) of eptinezumab-treated patients were below the ICHD thresholds for diagnosis of CM, compared with 32.4% of patients receiving placebo. Conclusions: This subgroup analysis of patients with a dual diagnosis of CM and MOH suggests that eptinezumab treatment resulted in greater improvements overall compared with placebo.
Norway rats (Rattus norvegicus) are considered one of the most significant vertebrate pests globally, because of their impacts on human and animal health. There are legal and moral obligations to minimise the impacts of wildlife management on animal welfare, yet there are few data on the relative welfare impacts of rat trapping and baiting methods used in the UK with which to inform management decisions. Two stakeholder workshops were facilitated to assess the relative welfare impacts of six lethal rat management methods using a welfare assessment model. Fifteen stakeholders including experts in wildlife management, rodent management, rodent biology, animal welfare science, and veterinary science and medicine, participated. The greatest welfare impacts were associated with three baiting methods, anticoagulants, cholecalciferol and non-toxic cellulose baits (severe to extreme impact for days), and with capture on a glue trap (extreme for hours) with concussive killing (mild to moderate for seconds to minutes); these methods should be considered last resorts from a welfare perspective. Lower impacts were associated with cage trapping (moderate to severe for hours) with concussive killing (moderate for minutes). The impact of snap trapping was highly variable (no impact to extreme for seconds to minutes). Snap traps should be regulated and tested to identify those that cause rapid unconsciousness; such traps might represent the most welfare-friendly option assessed for killing rats. Our results can be used to integrate consideration of rat welfare alongside other factors, including cost, efficacy, safety, non-target animal welfare and public acceptability when selecting management methods. We also highlight ways of reducing welfare impacts and areas where more data are needed.
High-energy and high-intensity lasers are essential for pushing the boundaries of science. Their development has allowed leaps forward in basic research areas, including laser–plasma interaction, high-energy density science, metrology, biology and medical technology. The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser (EuXFEL) facility. These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam. This paper introduces the ReLaX laser, a short-pulse high-intensity Ti:Sa laser system, and discusses its characteristics as available for user experiments. It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativistic-intensity laser driver.
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications.
To evaluate total usual intakes and biomarkers of micronutrients, overall dietary quality and related health characteristics of US older adults who were overweight or obese compared with a healthy weight.
Design:
Cross-sectional study.
Setting:
Two 24-h dietary recalls, nutritional biomarkers and objective and subjective health characteristic data were analysed from the National Health and Nutrition Examination Survey 2011–2014. We used the National Cancer Institute method to estimate distributions of total usual intakes from foods and dietary supplements for eleven micronutrients of potential concern and the Healthy Eating Index (HEI)-2015 score.
Participants:
Older adults aged ≥60 years (n 2969) were categorised by sex and body weight status, using standard BMI categories. Underweight individuals (n 47) were excluded due to small sample size.
Results:
A greater percentage of obese older adults compared with their healthy-weight counterparts was at risk of inadequate Mg (both sexes), Ca, vitamin B6 and vitamin D (women only) intakes. The proportion of those with serum 25-hydroxyvitamin D < 40 nmol/l was higher in obese (12 %) than in healthy-weight older women (6 %). Mean overall HEI-2015 scores were 8·6 (men) and 7·1 (women) points lower in obese than in healthy-weight older adults. In addition, compared with healthy-weight counterparts, obese older adults were more likely to self-report fair/poor health, use ≥ 5 medications and have limitations in activities of daily living and cardio-metabolic risk factors; and obese older women were more likely to be food-insecure and have depression.
Conclusions:
Our findings suggest that obesity may coexist with micronutrient inadequacy in older adults, especially among women.
In order to understand the transport of fast electrons within solid density targets driven by an optical high power laser, we have numerically investigated the dynamics and structure of strong self-generated magnetic fields in such experiments. Here we present a systematic study of the bulk magnetic field generation due to the ponderomotive current, Weibel-like instability and resistivity gradient between two solid layers. Using particle-in-cell simulations, we observe the effect of varying the laser and target parameters, including laser intensity, focal size, incident angle, preplasma scale length, target thickness and material and experimental geometry. The simulation results suggest that the strongest magnetic field is generated with laser incident angles and preplasma scale lengths that maximize laser absorption efficiency. The recent commissioning of experimental platforms equipped with both optical high power laser and X-ray free electron laser (XFEL), such as European XFEL-HED, LCLS-MEC and SACLA beamlines, provides unprecedented opportunities to probe the self-generated bulk magnetic field by X-ray polarimetry via Faraday rotation with simultaneous high spatial and temporal resolution. We expect that this systematic numerical investigation will pave the way to design and optimize near future experimental setups to probe the magnetic fields in such experimental platforms.
Shunt-related adverse events are frequent in infants after modified Blalock–Taussig despite use of acetylsalicylic acid prophylaxis. A higher incidence of acetylsalicylic acid-resistance and sub-therapeutic acetylsalicylic acid levels has been reported in infants. We evaluated whether using high-dose acetylsalicylic acid can decrease shunt-related adverse events in infants after modified Blalock–Taussig.
Methods
In this single-centre retrospective cohort study, we included infants ⩽1-year-old who underwent modified Blalock–Taussig placement and received acetylsalicylic acid in the ICU. We defined acetylsalicylic acid treatment groups as standard dose (⩽7 mg/kg/day) and high dose (⩾8 mg/kg/day) based on the initiating dose.
Results
There were 34 infants in each group. Both groups were similar in age, gender, cardiac defect type, ICU length of stay, and time interval to second stage or definitive repair. Shunt interventions (18 versus 32%, p=0.16), shunt thrombosis (14 versus 17%, p=0.74), and mortality (9 versus 12%, p=0.65) were not significantly different between groups. On multiple logistic regression analysis, single-ventricle morphology (odds ratio 5.2, 95% confidence interval of 1.2–23, p=0.03) and post-operative red blood cells transfusion ⩾24 hours [odds ratio 15, confidence interval of (3–71), p<0.01] were associated with shunt-related adverse events. High-dose acetylsalicylic acid treatment [odds ratio 2.6, confidence interval of (0.7–10), p=0.16] was not associated with decrease in these events.
Conclusions
High-dose acetylsalicylic acid may not be sufficient in reducing shunt-related adverse events in infants after modified Blalock–Taussig. Post-operative red blood cells transfusion may be a modifiable risk factor for these events. A randomised trial is needed to determine appropriate acetylsalicylic acid dosing in infants with modified Blalock–Taussig.
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.
The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together.
There is limited evidence on the acceptability, feasibility and cost-effectiveness of task-sharing interventions to narrow the treatment gap for mental disorders in sub-Saharan Africa. The purpose of this article is to describe the rationale, aims and methods of the Africa Focus on Intervention Research for Mental health (AFFIRM) collaborative research hub. AFFIRM is investigating strategies for narrowing the treatment gap for mental disorders in sub-Saharan Africa in four areas. First, it is assessing the feasibility, acceptability and cost-effectiveness of task-sharing interventions by conducting randomised controlled trials in Ethiopia and South Africa. The AFFIRM Task-sharing for the Care of Severe mental disorders (TaSCS) trial in Ethiopia aims to determine the acceptability, affordability, effectiveness and sustainability of mental health care for people with severe mental disorder delivered by trained and supervised non-specialist, primary health care workers compared with an existing psychiatric nurse-led service. The AFFIRM trial in South Africa aims to determine the cost-effectiveness of a task-sharing counselling intervention for maternal depression, delivered by non-specialist community health workers, and to examine factors influencing the implementation of the intervention and future scale up. Second, AFFIRM is building individual and institutional capacity for intervention research in sub-Saharan Africa by providing fellowship and mentorship programmes for candidates in Ethiopia, Ghana, Malawi, Uganda and Zimbabwe. Each year five Fellowships are awarded (one to each country) to attend the MPhil in Public Mental Health, a joint postgraduate programme at the University of Cape Town and Stellenbosch University. AFFIRM also offers short courses in intervention research, and supports PhD students attached to the trials in Ethiopia and South Africa. Third, AFFIRM is collaborating with other regional National Institute of Mental Health funded hubs in Latin America, sub-Saharan Africa and south Asia, by designing and executing shared research projects related to task-sharing and narrowing the treatment gap. Finally, it is establishing a network of collaboration between researchers, non-governmental organisations and government agencies that facilitates the translation of research knowledge into policy and practice. This article describes the developmental process of this multi-site approach, and provides a narrative of challenges and opportunities that have arisen during the early phases. Crucial to the long-term sustainability of this work is the nurturing and sustaining of partnerships between African mental health researchers, policy makers, practitioners and international collaborators.
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
This study presents accelerator mass spectrometry (AMS) radiocarbon dates and pollen assemblages of 400-cm core sediments collected from the Karekare Swamp in Rarotonga, Southern Cook Islands, to investigate vegetation changes on the island, in particular those induced by human impacts. Eight 14C dates of charcoal and higher plant fragment samples indicate that the sediments accumulated since ∼6.0 cal kBP, with an apparent interruption of deposition (hiatus) from 130 to 132 cm in depth, corresponding to ∼2.8 to 0.7 cal kBP. The appearance of Chenopodiaceae pollen from upland weeds, and Cucurbitaceae and Vigna pollen grains from cultivated plants suggest that human influence existed in core sediments above 130 cm in depth. The increased abundance of Pandanus pollen and monolate-type fern spores also implies the existence of human activity.
A simple device by which the characters of an unknown organism can be com pared with those of named genera and species is described. The comparison is made by using ‘diagnostic tables’ of characters found to have differential value.
Separate tables for Gram-positive and Gram-negative bacteria were made; the first stage indicated the probable genus into which the unknown fell and a second (and occasionally a third) stage was needed to identify the species or subspecies.
We wish to thank Dr Ruth E. Gordon for much unpublished data which were invaluable in constructing Table 1 gg, Miss Helen E. Ross for helping with Table 1f, Dr Oleg Lysenko for letting us use data from a paper about to be published, and Mr W. Clifford for the photographs and figures.
Thirty-six mature Finnish Landrace × Dorset Horn ewes, each suckling two lambs, were used in a comparative slaughter experiment to measure changes in body tissues during early lactation. Two levels of body fatness at lambing were established by giving ewes a complete diet containing 10 MJ metabolizable energy (ME) and 139 g crude protein (CP)/kg d.m. either close to requirements or ad libitum during the second half of pregnancy. In lactation half the ewes in each group were given a complete diet containing either 90 (diet A) or 60 (diet B) % milled hay ad libitum. These diets contained 7·9 and 9·2 MJ ME and 121 and 132 g CP/kg d.m. respectively.
Ewes fed at the two levels in pregnancy contained 8·4 and 19·6 kg chemically determined fat 5 days after lambing but had similar amounts of body protein, ash and water. Over 6 weeks of lactation ewes given diet A lost 60 and 69% of these weights of fat respectively, while ewes given diet B gained 5% and lost 30% respectively. Up to 26 g of body protein was lost daily from ewes given diet A but none from ewes on diet B. During early lactation the weight of the empty digestive tract increased while the weights of most other body components, particularly the carcass, decreased. The ratio of body energy change to live-weight change varied from 24 to 90 MJ/kg. Thus live-weight change did not accurately reflect relative or absolute changes in body energy.
Voluntary food intake was greater for ewes given the high-energy diet (B) than for those given diet A and was depressed in the fatter ewes. Differences in intake could be explained by the effects of body fatness and diet on the weight of gut contents. Milk yield was not significantly affected by body fat reserves but was higher on diet B than A. Fat content of milk was higher and protein content lower for ewes with the higher fat reserves at lambing.
As the contribution of fat loss to energy available for milk synthesis increased there appeared to be a reduction in the energetic efficiency of milk synthesis. A number of possible reasons for this are discussed.
The efficacy of estimates of gut contents and total body water in increasing the precision with which the chemical composition of the body could be estimated in early lactation was evaluated in 36 Finnish Landrace × Dorset Horn ewes. The ewes were fed at two levels in pregnancy, and, in lactation, given diets of two metabolizable energy concentrations.
The allometric relationships relating weight of chemical fat and protein to emptybody weight were not affected by treatment or stage of lactation. Inclusion of an index of gut contents, based on dry-matter intake, indigestibility and retention time of food residues, together with live weight in a regression equation predicting weight of body fat, only slightly increased the precision of estimate compared with equations using live weight alone.
There was a close negative relationship between the proportions of water and fat in live weight. Inclusion of weight of body water with live weight in a regression equation predicting weight of body fat markedly increased the precision of estimate and the residual error (0·81 kg) was similar at different stages of lactation. However, when deuterium oxide space was used instead of body water there was only a small increase in precision of estimate and the residual error varied from 5·3 kg in early lactation to 2·1 kg in mid-lactation. The relationship between deuterium oxide space and body water was shown to be variable and altered by stage of lactation, and these differences were associated with differences in rate of water turnover in the animal's body.
It is concluded that estimates of body water are unsuitable for estimating weight of body fat in early lactation.