We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate characterization of high-power laser parameters, especially the near-field and far-field distributions, is crucial for inertial confinement fusion experiments. In this paper, we propose a method for computationally reconstructing the complex amplitude of high-power laser beams using modified coherent modulation imaging. This method has the advantage of being able to simultaneously calculate both the near-field (intensity and wavefront/phase) and far-field (focal-spot) distributions using the reconstructed complex amplitude. More importantly, the focal-spot distributions at different focal planes can also be calculated. To verify the feasibility, the complex amplitude optical field of the high-power pulsed laser was measured after static aberrations calibration. Experimental results also indicate that the near-field wavefront resolution of this method is higher than that of the Hartmann measurement. In addition, the far-field focal spot exhibits a higher dynamic range (176 dB) than that of traditional direct imaging (62 dB).
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
We demonstrate a high-peak-power master oscillator power amplifier burst-mode laser system that generates microsecond burst duration pulses at 355 nm with a GHz-adjustable intra-burst pulse frequency. In the fiber seed, a high-bandwidth electro-optic modulator is employed to modulate a continuous-wave (CW) laser into a pulse train at GHz frequency. To acquire a microsecond rectangular burst pulse envelope, two acousto-optic modulators are used to chop the CW pulse train and generate a pre-compensation burst envelope. A three-stage neodymium-doped yttrium aluminum garnet amplifier boosts the burst-mode fiber seed’s burst energy of 1.65 J at 1064 nm. To achieve a high-power ultraviolet (UV) burst-mode laser, sum frequency generation in a LiB3O5 crystal is employed to convert the wavelength, achieving over 300 kW of peak power at 1.15 μs/10 Hz. The intra-burst pulse frequency of the UV burst laser can be adjustable from 1 to 10 GHz with a sinusoidal waveform. To the best of our knowledge, this paper represents the highest reported microsecond UV burst-mode laser in terms of output energy and peak power with the GHz-adjustable intra-burst frequency. The high-power microsecond UV burst-mode pulse laser can be directly used as a light-driven source in large-bandwidth/high-power microwave photonic systems, providing a long pulse width and high peak power laser while significantly improving the system’s multi-parameter adjustment capability and adaptability.
Consistent with theories on the equilibrium matching between capital structure and employee job risk aversion, we find a robust, positive association between a firm’s leverage and its employees’ family labor income diversification. Higher-Leverage firms also recruit new employees with greater income diversification. For identification, we exploit two policy shocks that exogenously change employee income diversification and firm leverage, respectively. Individual employee-level tests further reveal that workers with differential risk attitudes adjust their job choices and household labor income portfolios in response to significant shifts in their employers’ leverage. Finally, human bankruptcy costs contribute to the general level of corporate risk-taking.
Nano-silicon has been regarded as the most promising anode material for next-generation lithium-ion batteries (LIBs). However, the preparation of nano-silicon suffers from high cost, complex procedures, and low yield, which hinders its commercial application. In this study, porous nano-silicon with particle sizes in the range of 50–100 nm was prepared through molten salt-assisted magnesiothermic reduction using porous nano-silica derived from clay minerals as the precursor. Through combining ball milling and acid activation, the synthesised nano-silica derived from montmorillonite exhibited smaller particle sizes (below 50 nm), higher specific surface area (647 m2 g–1), and total pore volume (0.71 cm3 g–1). This unique structure greatly facilitated the conversion efficiency of silica into nano-silicon by maximising the contact area between silica and magnesium powder and optimising the diffusion kinetics of magnesium atoms. When used as anodes in LIBs, the synthesised nano-silicon materials demonstrated a high specific capacity of up to 1222 mAh g–1 and an excellent capacity retention rate of 79% after 150 cycles at a current density of 0.5 A g–1. This method provides a novel approach for the cost-effective and large-scale production of nano-silicon materials for high-performance anodes.
Smectite growth is of importance across various fields due to its abundance on the surface of both Earth and Mars. However, the impact of the crystallinity of initial materials on smectite growth processes remains poorly understood. In this study, the kinetic processes of smectite growth were examined via experimental synthesis of trioctahedral Mg-Ni saponites. Mg-Ni saponites were synthesized using mixed precursors, specifically end-member Mg-saponite and Ni-saponite, which exhibit different crystallinities. The crystal chemistry and morphology of samples were analyzed using X-ray diffraction, Fourier-transform infrared spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy. The experimental results converge towards these main conclusions: (i) the formation of Mg-Ni saponite solid solutions are promoted when the precursors are small particles, whereas large-particle precursors limit their own dissolution and do not yield Mg-Ni saponite solid solutions under the experimental conditions; (ii) because Ni exhibits a greater stability within the saponite structure compared to Mg, the Mg-Ni-saponite solid solutions formed more easily from the mixture of Ni-saponite germs and well-crystallized Mg-saponite precursors than from the mixture of Mg-saponite germs and well-crystallized Ni-saponite precursors; (iii) the dissolution extent (DE) of precursor mixtures increases with longer synthesis time, higher synthesis temperature, and larger gap between synthesis temperature of precursors and of samples, and stabilizes once it reaches a certain value. Thus DE can be used to estimate the kinetics of Mg-Ni saponite crystallization from precursor mixtures. These results obtained from the experimental Mg-Ni saponite system are useful for predicting the evolution processes of smectite in natural systems.
Laser-induced damage threshold is the main limitation for fused silica optics in high-power laser applications. The existence of various defects near the surface is the key factor for the degradation of the threshold. In this work, the photoluminescence spectra at different regions of the damaged and recovered fused silica samples are recorded to analyze the correlation between photoluminescence of surface defects and laser-induced damage threshold. The experimental data concluded the inverse proportional correlation between fluorescence and laser-induced damage threshold value. The weak photoluminescence is the guarantee of the high laser-induced damage threshold, and then the higher local Si nanocluster concentration corresponds with the higher laser-induced damage threshold value for the fused silica optics after CO2 laser treatment. The investigation reveals that photoluminescence measurement can be employed to check the quality of pristine fused silica and evaluate the tendency of the laser-induced damage threshold value. The current results are helpful for understanding the evolution of interaction from CO2 laser treatment and fused silica optics and can provide the guide of process technology for the high quality of fused silica optics.
Numerous Late Carboniferous – Early Permian dykes are found in West Junggar and represent an important part of the Central Asian Orogenic Belt. In this contribution, we use these dykes to assess the tectonic regime and stress state in the Late Carboniferous – Early Permian. The West Junggar dykes are mainly diorite/dioritic porphyrite with minor diabase and were formed in 324–310 Ma. They have been divided into two groups based on their orientation, petrology and geochronology. Group 1 dykes mostly comprise WNW-striking dioritic porphyrite and NE-striking diorite with minor diabase and resemble the Karamay-Baogutu sanukitoid. They were probably formed from depleted mantle at a relatively high temperature and pressure with the addition of 1–2% sediment/sedimental partial melt and 0–5% trapped oceanic crust-derived melts. Group 2 dykes are ENE-striking and are similar to sanukite in the Setouchi Volcanic Belt. These dykes were also derived from depleted mantle at a shallow depth but high temperature with the addition of 2–3.5% sediment/sedimental partial melt. Magma banding and injection folds in dykes and host granitoids indicate magma flow. Paleostress analysis reveals that both groups of dykes were formed in a tensile stress field. Their emplacement is favoured by presence of pre-existing joints or fractures in the host granitoids and strata. We conclude that large-scale asthenosphere mantle upwelling induced by trapped oceanic slab-off can explain the magmatism and significant continental crustal growth of West Junggar during Late Carboniferous to Early Permian.
To analyse the comparative clinical outcomes and clinicopathological significance of vocal fold leukoplakia lesions treated by appearance classification and traditional methods.
Method
A total of 1442 vocal fold leukoplakia patients were enrolled. Group A patients were treated according to appearance classification and Group B patients were treated according to traditional methods.
Results
In Group A, 24.4, 14.9 and 60.6 per cent of patients had grade I, II and III dysplasia, respectively. Grade I dysplasia (63.4 per cent) was more than twice as frequent in Group B patients than in Group A patients, while grade II dysplasia (20.4 per cent) and grade III dysplasia (16.2 per cent) were significantly less frequent in Group B patients than in Group A patients (p = 0.000). There was a significant correlation between vocal fold leukoplakia appearance and the degree of dysplasia (p = 0.000). The recurrence and malignant transformation rates (17.6 and 31 per cent, respectively) in Group B were significantly greater than those in Group A (10.8 and 25.9 per cent, respectively) (p = 0.000).
Conclusion
Vocal fold leukoplakia appearance classification is useful for guiding treatment decision-making and could help to improve therapeutic accuracy.
Nonlinear compression has become an obligatory technique along with the development of ultrafast lasers in generating ultrashort pulses with narrow pulse widths and high peak power. In particular, techniques of nonlinear compression have experienced a rapid progress as ytterbium (Yb)-doped lasers with pulse widths in the range from hundreds of femtoseconds to a few picoseconds have become mainstream laser tools for both scientific and industrial applications. Here, we report a simple and stable nonlinear pulse compression technique with high efficiency through cascaded filamentation in air followed by dispersion compensation. Pulses at a center wavelength of 1040 nm with millijoule pulse energy and 160 fs pulse width from a high-power Yb:CaAlGdO4 regenerative amplifier are compressed to 32 fs, with only 2.4% loss from the filamentation process. The compressed pulse has a stable output power with a root-mean-square variation of 0.2% over 1 hour.
Space manipulators are typically installed on spacecraft using an emergency separation device (ESD). In the event of a malfunction, the ESD ejects the manipulator from the spacecraft. However, due to the relative rotation of the manipulator’s joints during the ejection, the equivalent ejection mass varies depending on different attitudes. This paper focuses on studying manipulators equipped with separation slide rails and analyzes their ejection characteristics under different attitudes to determine the optimal manipulator attitude for ejection. Initially, the ejection dynamics model of the space manipulator is established using the Lagrangian method, based on the kinetic energy equation, kinematics equation, and the boundary condition between the manipulator and ESD. Afterward, the space dynamics model is transformed into the dynamic model of plane ejection state by recursion formula. From this model, the equivalent ejection mass and ejection velocity are obtained, and the joint angular variation during ejection is acquired by considering joint friction torque. Using the law of conservation of angular momentum, the ejection angular velocity is then calculated. Finally, this study selected a 7-DOF space manipulator as an example and adjusted the damping parameter B of the joint for more precise calculations by choosing the attitude with a relatively larger joint angular variation. The modified model was then tested for its applicability to other attitudes. After determining the value of B, the correctness of the algorithm was validated by MATLAB calculation, ADAMS simulation, and real object ejection test.
Although ethanol treatment is widely used to activate oocytes, the underlying mechanisms are largely unclear. Roles of intracellular calcium stores and extracellular calcium in ethanol-induced activation (EIA) of oocytes remain to be verified, and whether calcium-sensing receptor (CaSR) is involved in EIA is unknown. This study showed that calcium-free ageing (CFA) in vitro significantly decreased intracellular stored calcium (sCa) and CaSR expression, and impaired EIA, spindle/chromosome morphology and developmental potential of mouse oocytes. Although EIA in oocytes with full sCa after ageing with calcium does not require calcium influx, calcium influx is essential for EIA of oocytes with reduced sCa after CFA. Furthermore, the extremely low EIA rate in oocytes with CFA-downregulated CaSR expression and the fact that inhibiting CaSR significantly decreased the EIA of oocytes with a full complement of CaSR suggest that CaSR played a significant role in the EIA of ageing oocytes. In conclusion, CFA impaired EIA and the developmental potential of mouse oocytes by decreasing sCa and downregulating CaSR expression. Because mouse oocytes routinely treated for activation (18 h post hCG) are equipped with a full sCa complement and CaSR, the present results suggest that, while calcium influx is not essential, CaSR is required for the EIA of oocytes.
Suppose you need to complete a task of 5 steps, each of which has equal difficulty and pass rate. You somehow have a privilege that can ensure you pass one of the steps, but you need to decide which step to be privileged before you start the task. Which step do you want to privilege? Mathematically speaking, the effect of each step on the final outcome is identical, and so there seems to be no prima facie reason for a preference. Five studies were conducted to explore this issue. In Study 1, participants could place the privilege on any of steps 1–5. Participants were most inclined to privilege step 5. In Study 2, participants needed to pay some money to purchase the privilege for steps 1–5, respectively. Participants would pay most money for step 5. Study 3 directly reminded participants that the probability of success of the whole task is mathematically the same, no matter on which step the privilege is placed, but most of the participants still prefer to privilege the final step. Study 4 supposed that the outcomes of all steps were not announced until all steps were finished, and asked how painful participants would feel if they passed all steps but one. People thought they would feel most painful when they failed at the final step. In Study 5, an implicit association test showed that people associated the first step with easy and the final step with hard. These results demonstrated the phenomenon of the final step effect and suggested that both anticipated painfulness and stereotype may play a role in this phenomenon.
Intertemporal choices involve tradeoffs between outcomes that occur at different times. Most of the research has used pure gains tasks and the discount rates yielding from those tasks to explain and predict real-world behaviors and consequences. However, real decisions are often more complex and involve mixed outcomes (e.g., sooner-gain and later-loss or sooner-loss and later-gain). No study has used mixed gain-loss intertemporal tradeoff tasks to explain and predict real-world behaviors and consequences, and studies involving such tasks are also scarce. Considering that tasks involving a combination of gains and losses may yield different discount rates and that existing pure gains tasks do not explain or predict real-world outcomes well, this study conducted two experiments to compare the discount rates of mixed gain-loss intertemporal tradeoffs with those of pure gains or pure losses (Experiment 1) and to examine whether these tasks predicted different real-world behaviors and consequences (Experiment 2). Experiment 1 suggests that the discount rate ordering of the four tasks was, from highest to lowest, pure gains, sooner-loss and later-gain, pure losses, and sooner-gain and later-loss. Experiment 2 indicates that the evidence supporting the claim that the discount rates of the four tasks were related to different real-world behaviors and consequences was insufficient.
According to Hamilton's rule, matrilineal-biased investment restrains men in matrilineal societies from maximising their inclusive fitness (the ‘matrilineal puzzle'). A recent hypothesis argues that when women breed communally and share household resources, a man should help his sisters' household, rather than his wife's household, as investment to the later but not the former would be diluted by other unrelated members (Wu et al., 2013). According to this hypothesis, a man is less likely to help on his wife's farm when there are more women reproducing in the wife's household, because on average he would be less related to his wife's household. We used a farm-work observational dataset, that we collected in the matrilineal Mosuo in southwest China, to test this hypothesis. As predicted, high levels of communal breeding by women in his wife's households do predict less effort spent by men on their wife's farm, and communal breeding in men's natal households do not affect whether men help on their natal farms. Thus, communal breeding by women dilutes the inclusive fitness benefits men receive from investment to their wife and children, and may drive the evolution of matrilineal-biased investment by men. These results can help solve the ‘matrilineal puzzle'.
Narrowband microwave generation with tuneable frequency is demonstrated by illuminating a photoconductive semiconductor switch (PCSS) with a burst-mode fibre laser. The whole system is composed of a high-power linearly polarized burst-mode pulsed fibre laser and a linear-state PCSS. To obtain a high-performance microwave signal, a desired envelope of burst is necessary and a pulse pre-compensation technique is adopted to avoid envelope distortion induced by the gain-saturation effect. Resulting from the technique, homogenous peak power distribution in each burst is ensured. The maximum energy of the laser burst pulse reaches 200 μJ with a burst duration of 100 ns at the average power of 10 W, corresponding to a peak power of 4 kW. When the PCSS is illuminated by the burst-mode fibre laser, narrowband microwave generation with tuneable frequency (0.80–1.12 GHz) is obtained with a power up to 300 W. To the best of the authors’ knowledge, it is the first demonstration of frequency-tuneable narrowband microwave generation based on a fibre laser. The high-power burst-mode fibre laser reported here has great potential for generating high-power arbitrary microwave signals for a great deal of applicable demands such as smart adaptive radar and intelligent high-power microwave systems.
To evaluate the effects of dietary Ca intake and Ca supplementation during pregnancy on low birth weight (LBW) and small for gestational age (SGA) infants.
Design:
A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity and Child Care Hospital in Lanzhou, China.
Setting:
A birth cohort study.
Participants:
Totally, 9595 pregnant women who came to the hospital for delivery at 20 weeks of gestation or more, and who were 18 years of age or older.
Results:
Compared with non-users, Ca supplement users had a reduced risk of LBW infants (OR = 0·77, 95 % CI: 0·63, 0·95) and a reduced risk of nulliparous women giving birth to LBW infants (OR = 0·75, 95 % CI: 0·58, 0·98) (P < 0·05). More specifically, both the use of Ca supplement before conception and during pregnancy (OR = 0·44, 95 % CI: 0·19, 0·99) and during pregnancy only (OR = 0·80, 95 % CI: 0·65, 0·99) had the main effect of reducing risk of nulliparous women giving birth to LBW infants (P < 0·05). There was no association between Ca supplementation and SGA (OR = 0·87, 95 % CI: 0·75, 1·01) (P > 0·05). However, higher dietary Ca intake during pregnancy decreases the risk of both LBW (quartile 2: OR = 0·72, 95 % CI: 0·55, 0·94; quartile 3: OR = 0·68, 95 % CI: 0·50, 0·62) and SGA infants (quartile 2: OR = 0·77, 95 % CI: 0·63, 0·95; quartile 3: OR = 0·71, 95 % CI: 0·57, 0·88, quartile 4: OR = 0·71, 95 % CI: 0·57, 0·88) (P < 0·05).
Conclusions:
Ca supplementation and adequate dietary intake of Ca during pregnancy are associated with a decreased risk of LBW infants born to nulliparous women.
The ablation and acceleration of diamond-like high-density carbon foils irradiated by thermal X-ray radiations are investigated with radiation hydrodynamics simulations. The time-dependent front of the ablation wave is given numerically for radiation temperatures in the range of 100–300 eV. The mass ablation rates and ablation pressures can be derived or implied from the coordinates of ablation fronts, which agree well with reported experiment results of high-density carbon with radiation temperatures Trad in the range of 160–260 eV. It is also found that the $T_{{\rm rad}}^3$ scaling law for ablation rates does not apply to Trad above 260 eV. The trajectories of targets and hydrodynamic efficiencies for different target thicknesses can be derived from the coordinates of ablation fronts using a rocket model and the results agree well with simulations. The peak hydrodynamic efficiencies of the acceleration process are investigated for different foil thicknesses and radiation temperatures. Higher radiation temperatures and target thicknesses result in higher hydrodynamic efficiencies. The simulation results are useful for the design of fusion capsules.
Astronomy education and public outreach (EPO) is one of the important part of the future development of astronomy. During the past few years, as the rapid evolution of Internet and the continuous change of policy, the breeding environment of science EPO keep improving and the number of related projects show a booming trend. EPO is no longer just a matter of to teachers and science educators but also attracted the attention of professional astronomers. Among all activates of astronomy EPO, the data driven astronomy education and public outreach (abbreviated as DAEPO) is special and important. It benefits from the development of Big Data and Internet technology and is full of flexibility and diversity. We will present the history, definition, best practices and prospective development of DAEPO for better understanding this active field.