We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The incompressible Navier–Stokes equations in spherical coordinates are solved using a pseudo-spectral method to simulate the problem of spherical Couette flow. The flow is investigated for a narrow-gap ratio with only the inner sphere rotating. We find that the flow is sensitive to the initial conditions and have used various initial conditions to obtain different branches of the bifurcation curve of the flow. We have identified three different branches dominated respectively by axisymmetric flow, travelling wave instability and equatorial instability. The axisymmetric branch shows unsteadiness at large Reynolds numbers. The travelling wave instability branch shows spiral instability and is prominent the near poles. The travelling wave instability branch further exhibits a reversal in the propagation direction of the spiral instability as the Reynolds number is increased. This branch also exhibits a multi-mode equatorial instability at larger Reynolds numbers. The equatorial instability branch exhibits twin jet streams on either side of the equator, which become unstable at larger Reynolds numbers. The flow topology on the three branches is also investigated in their phase space and found to exhibit chaotic behaviour at large Reynolds numbers on the travelling wave instability branch.
This study assessed the impact of improved green fodder production activities on technical efficiency (TE) of dairy farmers in climate vulnerable landscapes of central India. We estimated stochastic production frontiers, considering potential self-selection bias stemming from both observable and unobservable factors in adoption of fodder interventions at farm level. The empirical results show that TE for treated group ranges from 0.55 to 0.59 and that for control ranges from 0.41 to 0.48, depending on how biases are controlled. Additionally, the efficiency levels of both adopters and non-adopters would be underestimated if the selectivity bias is not appropriately accounted. As the average TE is consistently higher for adopter farmers than the control group, promoting improved fodder cultivation would increase input use efficiency, especially in resource-deprived small holder dairy farmers in the semi-arid tropics.
Maize and Imperata cylindrica have been utilized globally as a pollen source for induction of haploids in wheat through chromosome elimination technique. Pollen parents with a higher haploid induction rate are desired for recovering the high frequency of haploids in wheat and related species. The present investigation was carried out with the aim to assess haploid induction efficiency of diverse germplasm of maize and I. cylindrica in different generations of intra and intergeneric crosses of hexaploid and tetraploid wheat and triticale-wheat derivatives. Crosses of twenty-six lines (female) with each of two I. cylindrica and twenty-one maize genotypes (testers) were evaluated for four haploid induction parameters viz., pseudoseed formation frequency (PFF), embryo formation frequency (EFF), haploid regeneration frequency (HRF) and haploid formation frequency (HFF). I. cylindrica outperformed maize in haploid induction rate with a frequency of embryos formed with I. cylindrica (18.39%) were significantly higher as compared to maize (4.08%). In the case of I. cylindrica genotype Ic-ye identified best with mean EFF of 30.55, 14.48 and 25.43% for hexaploids, tetraploids and triticale × wheat derivatives, respectively whereas in the case of maize genotype HPMC-60 performed best with EFF of 12.61% for hexaploids, HPMC-58 (12.58%) for tetraploids and HPMC-16 for triticale × wheat derivatives with EFF of 8.91%. I. cylindrica genotype Ic-ye and maize genotypes HPMC-14, HPMC-53, HPMC-60, HPMC-64 with significantly positive GCA for haploid induction parameters may be utilized as efficient pollen parents for recovering higher frequency of haploids in wheat.
Coronavirus disease 2019 (COVID-19) emerged from a city in China and has now spread as a global pandemic affecting millions of individuals. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is being extensively studied in terms of its genetic epidemiology using genomic approaches. Andhra Pradesh is one of the major states of India with the third-largest number of COVID-19 cases with a limited understanding of its genetic epidemiology. In this study, we have sequenced 293 SARS-CoV-2 genome isolates from Andhra Pradesh with a mean coverage of 13324X. We identified 564 high-quality SARS-CoV-2 variants. A total of 18 variants mapped to reverse transcription polymerase chain reaction primer/probe sites, and four variants are known to be associated with an increase in infectivity. Phylogenetic analysis of the genomes revealed the circulating SARS-CoV-2 in Andhra Pradesh majorly clustered under the clade A2a (20A, 20B and 20C) (94%), whereas 6% fall under the I/A3i clade, a clade previously defined to be present in large numbers in India. To the best of our knowledge, this is the most comprehensive genetic epidemiological analysis performed for the state of Andhra Pradesh.
This paper reports an integration of dual band microstrip antenna with thin film amorphous silicon solar cell which creates a wearable system to harvest microwave energy. The multiple layers in the encapsulation of the thin film solar cell are used as a substrate for microstrip antenna. The rectifier and matching circuit are designed on cotton jeans material and the whole system is mechanically supported by the foam of 5 mm thick. The performance of the antenna is studied for the mechanical bending condition. The device has maintained good power conversion efficiency. The efficiency of the voltage doubler is tested by varying radio frequency power levels from −30 to10 dBm. The voltage doubler conversion efficiency at 1.85 and 2.45 GHz are 58 and 43%, respectively, for a load of 7.5 kΩ for an input power level of −5 dBm.
Nanoemulsion formulation of vitamin D3 have been shown to have better bioavailability than the coarse emulsion preparation in vitro and in vivo animal studies. In the absence of randomised trial in humans, comparing the efficacy of nanotechnology-based miscellised vitamin D3 over conventional vitamin D3, we undertook this study. A total of 180 healthy adults were randomised to receive either micellised (DePura, group A) or conventional vitamin D3 (Calcirol, group B) at a monthly dose of 60 000 IU (1500μg) for 6 months. The outcome parameters were serum 25-hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH), Ca, phosphate, alkaline phosphatase and urinary Ca:creatinine ratio. A total of eighty-nine subjects in group A and seventy-seven in group B completed the trial. Subjects in both the groups had a significant increase in their serum 25(OH)D levels following supplementation (group A: 21·5 (sd 10·9) to 76·7 (sd 18·8) nmol/l (P<0·001); group B: 22·8 (sd 10·4) to 57·8 (sd 16·0) nmol/l (P<0·001)). Participants in micellised group had an additional increase of 20·2 (95 % CI 14·0, 26·4) nmol/l in serum 25(OH)D levels (P<0·001). The difference between the groups was 17·5 (95 % CI 11·8, 23·1) nmol/l, which remained statistically significant (P<0·001) even after adjustment for age and sex. Significant decline in mean serum PTH was observed in both the groups. No hypercalcaemia or hypercalciuria was noted. Although supplementation with both the preparations resulted in a significant rise in serum 25(OH)D levels, micellised vitamin D3 appeared to be more efficacious in achieving higher levels of serum 25(OH)D.
A novel series of nanocrystalline AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys (HEAs) were synthesized by mechanical alloying followed by spark plasma sintering. The phase evolution of the current HEAs was studied using X-ray diffraction (XRD), transmission electron microscopy, and selected area electron diffraction. The XRD of the AlCuCrFeMn sintered HEA shows evolution of ordered B2 phase (AlFe type), sigma phase (Cr rich), and FeMn phase. AlCuCrFeMnWx (x = 0.05, 0.1, 0.5 mol) shows formation of ordered B2 phases, sigma phases, FeMn phases, and BCC phases. Micro-hardness of the AlCuCrFeMnWx samples was measured by Vickers microindentation and the maximum value observed is 780 ± 12 HV. As the tungsten content increases, the fracture strength under compression increases from 1010 to 1510 MPa. Thermodynamic parameters of present alloys confirm the crystalline phase formation, and finally structure–property relationship was proposed by conventional strengthening mechanisms.
Carbon emissions due to various man-made devices are one of the main reasons for global warming. Green communications is largely concerned with reducing the carbon emissions caused during communications. One of the main reasons for carbon emissions in communication is the emission in generating the electrical energy consumed in communication networks. Soon, the electrical energy consumed in information and communication technology (ICT) related activities will be about 14% of all the electrical energy consumed in the world [1]. A large part of this is consumed in wireless communication networks (where the base station consumes most of the energy). Thus, reducing the carbon emission due to the energy used in wireless communications will have a significant environmental impact. This can be done in two ways. One of course is that we should reduce the electrical energy consumed in communications. Recent work has shown that the energy consumed can easily be reduced to one-third [1, 2]. The other way is to generate the energy used in a way that reduces (or totally eliminates) carbon emission. If one generates electricity via coal or gas installations, typically 800–950 gram CO2 (equivalent) is emitted per kwh. However, if one generates it via solar cells or wind turbines there is no emission at all [1, 2]. Therefore, there has been tremendous interest in using solar and/or wind energy at the base stations (BSs) of cellular systems [2].
Radioactive contamination can occur as a result of accidental or intentional release of radioactive materials (RM) into the environment. RM may deposit on clothing, skin, or hair. Decontamination of contaminated persons should be done as soon as possible to minimize the deleterious health effects of radiation. The goal of this study was to evaluate the decontamination efficiency (for residual contaminant) of the active components of “Shudhika,” an indigenously developed skin decontamination kit. The study kit is for external radioactive decontamination of intact skin.
Methods
Decontamination efficiency was evaluated on the skin surface of rabbit (n = 6) and human volunteers (n = 13). 99mTc sodium pertechnetate (200-250 μCi) was used as the radio-contaminant. Skin surface area (5 × 5 cm2) of thoracic abdominal region of the rabbit and the forearm and the palm of human volunteers were used for the study. Decontamination was performed by using cotton swabs soaked with chemical decontamination agents of the kit.
Results
Decontamination efficiency (% of the contaminant removed) was calculated for each component of the study. Overall effectiveness of the kit was calculated to be 85% ± 5% in animal and 92% ± 3% in human skin surfaces. Running water and liquid soap with water was able to decontaminate volunteers' hand and animal skin up to 70% ± 5%. Chemical decontamination agents were applied only for trace residues (30% ± 5%). Efficiency of all the kit components was found up to be 20% ± 3% (animal) and 28% ± 2 (human), respectively. Residual contamination after final decontamination attempt for both the models was observed to be 12% ± 3% and 5% ± 2%. After 24 and 48 hours of the decontamination procedure, skin was found to be normal (no redness, erythema and edema were observed).
Conclusion
Decontaminants of the study kit were effective in removal of localized radioactive skin contamination when water is ineffective for further decontamination. By using the chemical decontaminants of the study kit, the use of water and radioactive waste generation could be reduced. Cross-contamination could also be avoided. During radiologic emergencies where water may be radioactively contaminated, the study kit could be used.
Rana S, Dutta M, Soni NL, Chopra MK, Kumar V, Goel R, Bhatnagar A, Sultana S, Sharma RK. Decontamination of human and rabbit skin experimentally contaminated with 99mTc radionuclide using the active components of “Shudika”—a skin decontamination kit. Prehosp Disaster Med. 2012;27(2):1-5.
The mechanism of glycine transport in lactating mouse mammary gland was investigated. Three Na+-dependent systems of glycine transport, distinguished on the basis of their ionic requirement and sensitivity to 2-(methylamino)isobutyric acid (MeAIB), were A (Na+-dependent, MeAIB-sensitive); (Na++Cl−)-dependent, MeAIB-insensitive; and Na+-dependent, Cl−-independent, MeAIB-insensitive. These systems were further distinguished on the basis of inhibition analysis and sensitivity to pH of the extracellular medium and preloading mammary tissue with amino acids. The uptake of glycine via the A system (Km 0·53 mM) was inhibited by preloading mammary tissue with alanine, while glycine uptake mediated by the (Na++Cl−)-dependent, MeAIB-insensitive system (Km 0·47 mM) was downregulated by preloading mammary tissue with all amino acids (alanine, sarcosine and histidine) tested. Treatment of mammary tissue with N-ethylmaleimide inhibited the uptake of glycine via both these systems. Decreasing the pH of the extracellular medium inhibited the uptake of glycine via the A system but not the (Na++Cl−)-dependent, MeAIB-insensitive system. On the basis of ionic requirement, system A appears to comprise two components, one dependent on Na+ plus Cl− and the other on Na+ alone. Insulin upregulated the A system-mediated uptake of glycine in pregnant mouse mammary tissue cultured in vitro, while the (Na++Cl−)-dependent, MeAIB-insensitive system remained unaffected.
The mechanism of cationic amino acid transport in lactating mouse mammary gland was investigated. Two Na+-independent systems of arginine transport were discriminated on the basis of their sensitivity to leucine. The leucine-sensitive uptake of arginine (Km 0·4 mM) was through a broad specificity system that interacted with both cationic and neutral amino acids, and was inhibited by preloading mammary tissue with neutral amino acids. The leucine-insensitive uptake was identified as the y+ system (Km 0·76 mM). Preloading mammary tissue with cationic amino acids increased the uptake of arginine by the y+ system. Decreasing the pH of the external medium to 6·0 suppressed the y+ system-mediated uptake by ∼25%, whereas the broad specificity system remained unaffected. Lactogenic hormones upregulated the y+ system-mediated uptake of arginine in pregnant mouse mammary tissue cultured in vitro, although the broad specificity system remained unaffected. The y+ system-mediated uptake increased 2-fold with insulin alone and 4-fold with the combination of insulin, cortisol and prolactin.
The characteristics of the transport systems of L-alanine in lactating mouse mammary gland and their regulation by lactogenic hormones have been studied. L-alanine uptake was mediated by three Na+-dependent and one Na+-independent systems. The 2-(methylamino)isobutyric acid-sensitive component of Na+-dependent uptake exhibited the usual characteristics of system A. Cl− dependency has been established for system A. The other two Na+-dependent systems, which we have named BCl−-dependent and BCl−-independent, are described for the first time. These are systems with broad specificity and were distinguished on the basis of inhibition analysis, Cl− dependency and the effect of preloading mammary tissue with amino acids. The Na+-independent route was identified as system L, which operates independent of Cl−. The A, L and BCl−-independent transport systems were upregulated in pregnant mouse mammary tissue cultured in vitro in the presence of lactogenic hormones (insulin plus cortisol plus prolactin). Insulin alone also upregulated systems A and L to some extent in pregnant mouse mammary tissue. BCl−-dependent activity was not detected in pregnant mouse mammary tissue and was not induced by lactogenic hormones in vitro.
Recently, Asmussen and Koole (Journal of Applied Probability30, pp. 365–372) showed that any discrete or continuous time marked point process can be approximated by a sequence of arrival streams modulated by finite state continuous time Markov chains. If the original process is customer (time) stationary then so are the approximating processes. Also, the moments in the stationary case converge. For discrete marked point processes we construct a sequence of discrete processes modulated by discrete time finite state Markov chains. All the above features of approximating sequences of Asmussen and Koole continue to hold. For discrete arrival sequences (to a queue) which are modulated by a countable state Markov chain we form a different sequence of approximating arrival streams by which, unlike in the Asmussen and Koole case, even the stationary moments of waiting times can be approximated. Explicit constructions for the output process of a queue and the total input process of a discrete time Jackson network with these characteristics are obtained.
Slotted ALOHA with a finite number of users, each with infinite buffer, is considered. For stationary, metrically transitive, non-independent input, the problem of existence of stationary queue length distributions is solved. Results are obtained for zero and arbitrary (finite a.s.) initial conditions. Continuity, in probability, of queue lengths with respect to input sequence is proved.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.