We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cryphodera guangdongensis n. sp. was collected from the soil and roots of Schima superba in Guangdong province, China. The new species is characterised by having a nearly spherical female, with dimensions of length × width = 532.3 (423.8–675.3) × 295.6 (160.0–381.2) μm, stylet length of 35.7 (31.1–42.1) μm, protruding vulval lips, a vulval slit measuring 54.2 (47.4–58.9) μm, an area between the vulva and anus that is flat to concave, and a vulva–anus distance 49.3 (41.1–57.6) μm. The male features two lip annules, a stylet length of 31.7 (27.4–34.8) μm and basal knobs that are slightly projecting anteriorly, while lateral field is areolated with three incisures and spicules length of 27.1 (23.7–31.0) μm. The second stage juvenile is characterised by a body length of 506.1 (441.8–564.4) μm long, two to three lip annules, a stylet length 31.2 (29.7–33.2) μm which is well developed, basal knobs projecting anteriorly, a lateral field that is areolate with three incisures, and a narrow rounded tail measuring 63.2 (54.2–71.3) μm long, with a hyaline region of 35.6 (27.4–56.6) μm long that is longer than the stylet. Based on morphology and morphometrics, the new species is closely related to C. sinensis and C. japonicum within the genus Cryphodera. The phylogenetic trees constructed based on the ITS-rRNA, 28S-rRNA D2–D3 region, and the partial COI gene sequences indicate that the new species clusters with other Cryphodera species but maintains in a separated subgroup. A key to the species of the genus Cryphodera is also provided in this study.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
This study explored mental workload recognition methods for carrier-based aircraft pilots utilising multiple sensor physiological signal fusion and portable devices. A simulation carrier-based aircraft flight experiment was designed, and subjective mental workload scores and electroencephalogram (EEG) and photoplethysmogram (PPG) signals from six pilot cadets were collected using NASA Task Load Index (NASA-TLX) and portable devices. The subjective scores of the pilots in three flight phases were used to label the data into three mental workload levels. Features from the physiological signals were extracted, and the interrelations between mental workload and physiological indicators were evaluated. Machine learning and deep learning algorithms were used to classify the pilots’ mental workload. The performances of the single-modal method and multimodal fusion methods were investigated. The results showed that the multimodal fusion methods outperformed the single-modal methods, achieving higher accuracy, precision, recall and F1 score. Among all the classifiers, the random forest classifier with feature-level fusion obtained the best results, with an accuracy of 97.69%, precision of 98.08%, recall of 96.98% and F1 score of 97.44%. The findings of this study demonstrate the effectiveness and feasibility of the proposed method, offering insights into mental workload management and the enhancement of flight safety for carrier-based aircraft pilots.
Temporal variability and methodological differences in data normalization, among other factors, complicate effective trend analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater surveillance data and its alignment with coronavirus disease 2019 (COVID-19) clinical outcomes. As there is no consensus approach for these analyses yet, this study explored the use of piecewise linear trend analysis (joinpoint regression) to identify significant trends and trend turning points in SARS-CoV-2 RNA wastewater concentrations (normalized and non-normalized) and corresponding COVID-19 case rates in the greater Las Vegas metropolitan area (Nevada, USA) from mid-2020 to April 2023. The analysis period was stratified into three distinct phases based on temporal changes in testing protocols, vaccination availability, SARS-CoV-2 variant prevalence, and public health interventions. While other statistical methodologies may require fewer parameter specifications, joinpoint regression provided an interpretable framework for characterization and comparison of trends and trend turning points, revealing sewershed-specific variations in trend magnitude and timing that also aligned with known variant-driven waves. Week-level trend agreement corroborated previous findings demonstrating a close relationship between SARS-CoV-2 wastewater surveillance data and COVID-19 outcomes. These findings guide future applications of advanced statistical methodologies and support the continued integration of wastewater-based epidemiology as a complementary approach to traditional COVID-19 surveillance systems.
The outer solar system is theoretically predicted to harbour an undiscovered planet, often referred to as Planet Nine. Simulations suggest that its gravitational influence could explain the unusual clustering of minor bodies in the Kuiper Belt. However, no observational evidence for Planet Nine has been found so far, as its predicted orbit lies far beyond Neptune, where it reflects only a faint amount of Sunlight. This work aims to find Planet Nine candidates by taking advantage of two far-infrared all-sky surveys, which are IRAS and AKARI. The epochs of these two surveys were separated by 23 years, which is large enough to detect Planet Nine’s $\sim3'$/year orbital motion. We use a dedicated AKARI Far-Infrared point source list for the purpose of our Planet Nine search — AKARI-FIS Monthly Unconfirmed Source List (AKARI-MUSL), which includes sources detected repeatedly only in hours timescale, but not after months. AKARI-MUSL is more advantageous than the AKARI Bright Source Catalogue (AKARI-BSC) for detecting moving and faint objects like Planet Nine with a twice-deeper flux detection limit. We search for objects that moved slowly between IRAS and AKARI detections given in the catalogues. First, we estimated the expected flux and orbital motion of Planet Nine by assuming its mass, distance, and effective temperature to ensure it can be detected by IRAS and AKARI, then applied the positional and flux selection criteria to narrow down the number of sources from the catalogues. Next, we produced all possible candidate pairs including one IRAS source and one AKARI source whose angular separations were limited between 42′ and $69.6'$, corresponding to the heliocentric distance range of 500 – 700 AU and the mass range of 7 – 17M$_{\oplus}$. There are 13 candidate pairs obtained after the selection criteria. After image inspection, we found one good candidate, of which the IRAS source is absent from the same coordinate in the AKARI image after 23 years and vice versa. However, AKARI and IRAS detections are not enough to determine the full orbit of this candidate. This issue leads to the need for follow-up observations, which will determine the Keplerian motion of our Planet Nine candidate.
An unusual orbital element clustering of Kuiper belt objects (KBOs) has been observed. The most promising dynamic solution is the presence of a giant planet in the outer Solar system, Planet Nine. However, due to its extreme distance, intensive searches in optical have not been successful. We aim to find Planet Nine in the far-infrared, where it has the peak of the black body radiation, using the most sensitive all-sky far-infrared survey to date, AKARI. In contrast to optical searches, where the energy of reflected sunlight decreases by $d^{4}$, thermal radiation in the infrared decreases with the square of the heliocentric distance $d^{2}$. We search for moving objects in the AKARI Single Scan Detection List. We select sources from a promising region suggested by an N-body simulation from Millholland and Laughlin 2017: $30^{\circ}\lt$ R.A. $\lt50^{\circ}$ and $-20^{\circ}\lt$ Dec. $\lt20^{\circ}$. Known sources are excluded by cross-matching AKARI sources with 9 optical and infrared catalogues. Furthermore, we select sources with small background strength to avoid sources in the cirrus. Since Planet Nine is stationary in a timescale of hours but moves on a monthly scale, our primary strategy is to select slowly moving objects that are stationary in 24 h but not in six months, using multiple single scans by AKARI. The selected slowly moving AKARI sources are scrutinised for potential contamination from cosmic rays. Our analysis reveals two possible Planet Nine candidates whose positions and flux are within the theoretical prediction ranges. These candidates warrant further investigation through follow-up observations to confirm the existence and properties of Planet Nine.
Indirect calorimetry (IC) is regarded as the benchmark for measuring resting energy expenditure (REE)(1) but validity and reliability in adults with overweight or obesity have not been systematically appraised(2). The aim of our research was to evaluate the diagnostic accuracy of IC for REE in adults with overweight or obesity. A rapid systematic review was conducted. PubMed and Web of Science were searched to December 2023. Eligible studies measured REE by IC in adults with overweight or obesity (BMI ≥ 25 kg/m2 or mean BMI > 30 kg/m2) reporting validity and/or reliability. Studies were selected using Covidence and critically appraised using the CASP diagnostic study checklist. From n = 4022 records, n = 21 studies utilising n = 13 different IC devices were included (n = 10 reported concurrent validity, n = 7 reported predictive validity, n = 7 reported reliability). A hand-held IC had poor validity and inconsistent reliability (n = 6 studies). Standard desktop-based ICs (n = 9 devices) were examined by across n = 18 studies; most demonstrated high validity, predictive ability, and good to excellent reliability. An IC accelerometer showed weak validity (n = 1 study); a body composition-based IC showed strong validity (n = 1 study); and a whole-room IC demonstrated excellent reliability (n = 1 study). Standard desktop-based IC demonstrated the most consistent validity, predictive ability, and reliability for REE in adults with overweight or obesity. Hand-held IC may have limited validity and reliability. Accelerometer, body composition-based, and whole-room IC devices require further evaluation. Inconsistent findings are attributed to differing methodologies and reference standards. Further research is needed to examine the diagnostic accuracy of IC in adults with overweight and obesity.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.
Brown dwarfs are failed stars with very low mass (13–75 Jupiter mass) and an effective temperature lower than 2 500 K. Their mass range is between Jupiter and red dwarfs. Thus, they play a key role in understanding the gap in the mass function between stars and planets. However, due to their faint nature, previous searches are inevitably limited to the solar neighbourhood (20 pc). To improve our knowledge of the low mass part of the initial stellar mass function and the star formation history of the Milky Way, it is crucial to find more distant brown dwarfs. Using James Webb Space Telescope (JWST) COSMOS-Web data, this study seeks to enhance our comprehension of the physical characteristics of brown dwarfs situated at a distance of kpc scale. The exceptional sensitivity of the JWST enables the detection of brown dwarfs that are up to 100 times more distant than those discovered in the earlier all-sky infrared surveys. The large area coverage of the JWST COSMOS-Web survey allows us to find more distant brown dwarfs than earlier JWST studies with smaller area coverages. To capture prominent water absorption features around 2.7 ${\unicode{x03BC}}$m, we apply two colour criteria, $\text{F115W}-\text{F277W}+1\lt\text{F277W}-\text{F444W}$ and $\text{F277W}-\text{F444W}\gt\,0.9$. We then select point sources by CLASS_STAR, FLUX_RADIUS, and SPREAD_MODEL criteria. Faint sources are visually checked to exclude possibly extended sources. We conduct SED fitting and MCMC simulations to determine their physical properties and associated uncertainties. Our search reveals 25 T-dwarf candidates and 2 Y-dwarf candidates, more than any previous JWST brown dwarf searches. They are located from 0.3 to 4 kpc away from the Earth. The spatial number density of 900–1 050 K dwarf is $(2.0\pm0.9) \times10^{-6}\text{ pc}^{-3}$, 1 050–1 200 K dwarf is $(1.2\pm0.7) \times10^{-6}\text{ pc}^{-3}$, and 1 200–1 350 K dwarf is $(4.4\pm1.3) \times10^{-6}\text{ pc}^{-3}$. The cumulative number count of our brown dwarf candidates is consistent with the prediction from a standard double exponential model. Three of our brown dwarf candidates were detected by HST, with transverse velocities $12\pm5$, $12\pm4$, and $17\pm6$ km s$^{-1}$. Along with earlier studies, the JWST has opened a new window of brown dwarf research in the Milky Way thick disk and halo.
Unmanned aerial vehicle (UAV) formations for bearing-only passive detection are increasingly important in modern military confrontations, and the array of the formation is one of the decisive factors affecting the detection accuracy of the system. How to plan the optimal geometric array in bearing-only detection is a complex nondeterministic polynomial problem, and this paper proposed the distributed stochastic subgradient projection algorithm (DSSPA) with layered constraints to solve this challenge. Firstly, based on the constraints of safe flight altitude and fixed baseline, the UAV formation is layered, and the system model for bearing-only cooperative localisation is constructed and analysed. Then, the calculation formula for geometric dilution of precision (GDOP) in the observation plane is provided, this nonlinear objective function is appropriately simplified to obtain its quadratic form, ensuring that it can be adapted and used efficiently in the system model. Finally, the proposed distributed stochastic subgradient projection algorithm (DSSPA) combines the idea of stochastic gradient descent with the projection method. By performing a projection operation on each feasible solution, it ensures that the updated parameters can satisfy the constraints while efficiently solving the convex optimisation problem of array planning. In addition to theoretical proof, this paper also conducts three simulation experiments of different scales, validating the effectiveness and superiority of the proposed method for bearing-only detection array planning in UAV formations. This research provides essential guidance and technical reference for the deployment of UAV formations and path planning of detection platforms.
Metabolic enzymes are the catalysts that drive the biochemical reactions essential for sustaining life. Many of these enzymes are tightly regulated by feedback mechanisms. To fully understand their roles and modulation, it is crucial to investigate the relationship between their structure, catalytic mechanism, and function. In this perspective, by using three examples from our studies on Mycobacterium tuberculosis (Mtb) isocitrate lyase and related proteins, we highlight how an integrated approach combining structural, activity, and biophysical data provides insights into their biological functions. These examples underscore the importance of employing fast-fail experiments at the early stages of a research project, emphasise the value of complementary techniques in validating findings, and demonstrate how in vitro data combined with chemical, biochemical, and physiological knowledge can lead to a broader understanding of metabolic adaptations in pathogenic bacteria. Finally, we address the unexplored questions in Mtb metabolism and discuss how we expand our approach to include microbiological and bioanalytical techniques to further our understanding. Such an integrated and interdisciplinary strategy has the potential to uncover novel regulatory mechanisms and identify new therapeutic opportunities for the eradication of tuberculosis. The approach can also be broadly applied to investigate other biochemical networks and complex biological systems.
This paper proposes a cooperative midcourse guidance law with target changing and topology switching for multiple interceptors intercepting targets in the case of target loss and communication topology switching. Firstly, a three-dimensional guidance model is established and a cooperative trajectory shaping guidance law is given. Secondly, the average position consistency protocol of virtual interception points is designed for communication topology switching, and the convergence of the average position of virtual interception points under communication topology switching is proved by Lyapunov stability theory. Then, in the case of the target changing, the target handover law and the handover phase guidance law are designed to ensure the acceleration smoothing, at last, the whole cooperative midcourse guidance law is given based on the combination of the above guidance laws. Finally, numerical simulation results show the effectiveness and the superiority of the proposed cooperative midcourse guidance law.
This study aimed to estimate the nationwide prevalence of cardiometabolic diseases (CMD) among adults with underweight in the US general population. Using data from the National Health and Nutrition Examination Survey (1999–2020), we estimated the age-standardised prevalence of dyslipidemia, hypertension, diabetes, chronic kidney disease, CVD and the presence of zero or at least two CMD. Multivariable Poisson regressions were used to compare CMD prevalence between subgroups, adjusting for age, sex and race/ethnicity. Among the 855 adults with underweight included, the weighted mean age was 40·8 years, with 68·1 % being women and 70·4 % non-Hispanic White. The estimated prevalence rates were 23·4 % for dyslipidemia (95 % CI 19·4 %, 27·5 %), 15·6 % for hypertension (95 % CI 13·3 %, 17·8 %), 2·5 % for diabetes (95 % CI 1·5 %, 3·5 %), 7·9 % for chronic kidney disease (95 % CI 6·9 %, 8·8 %) and 6·1 % for CVD (95 % CI 4·3 %, 7·9 %). The prevalence of having zero and at least two CMD was 50·6 % (95 % CI 44·1 %, 57·0 %) and 12·3 % (95 % CI 8·1 %, 16·4 %), respectively. Non-Hispanic Black adults had significantly higher prevalence of diabetes (adjusted prevalence ratio, 3·35; 95 % CI 1·35, 8·30) compared with non-Hispanic White adults. In conclusion, approximately half of the underweight adults had at least one CMD, and 12·3 % had at least two CMD. Prevention and management of CMD in underweight adults are critical yet neglected public health challenges.
One species-general life history (LH) principle posits that challenging childhood environments are coupled with a fast or faster LH strategy and associated behaviors, while secure and stable childhood environments foster behaviors conducive to a slow or slower LH strategy. This coupling between environments and LH strategies is based on the assumption that individuals’ internal traits and states are independent of their external surroundings. In reality, individuals respond to external environmental conditions in alignment with their intrinsic vitality, encompassing both physical and mental states. The present study investigated attachment as an internal mental state, examining its role in mediating and moderating the association between external environmental adversity and fast LH strategies. A sample of 1169 adolescents (51% girls) from 9 countries was tracked over 10 years, starting from age 8. The results confirm both mediation and moderation and, for moderation, secure attachment nullified and insecure attachment maintained the environment-LH coupling. These findings suggest that attachment could act as an internal regulator, disrupting the contingent coupling between environmental adversity and a faster pace of life, consequently decelerating human LH.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
The concept of Mental Health Literacy (MHL) is inherently multidimensional. However, the interrelationships among its various dimensions remain insufficiently elucidated. In recent years, the textual analysis of social media posts has emerged as a promising methodological approach for longitudinal research in this domain.
Objectives
This study aimed to investigate whether temporal causal associations exist between recognition of mental illness (R), mental illness stigma (S), help-seeking efficacy (HE), maintenance of positive mental health (M), and help-seeking attitude (HA).
Methods
Tweets were collocted at three distinct time points: T1, T2, and T3, spanning the period from November 1, 2021, to December 31, 2022. We employed a machine-learning approach to categorize the posts into five MHL facets. Using these facets, we trained a machine learning model, specifically Bidirectional Encoder Representations from Transformers (BERT), to determine the MHL scores. To be eligible, an account must have an R facet score at T1, and M, S, HE facet scores at T2, as well as an HA facet score at T3. In total, we retrieved 4,471,951 MHL-related tweets from 941 users. We further employed structural equation modeling to validate the causal relationships within the MHL framework.
Results
In the evaluation, BERT achieved average accuracy scores exceeding 89% across the five MHL facets in the validation set, along with F1-scores ranging between 0.75 and 0.89. Among the five MHL facets—maintenance of positive mental health, recognition of mental illness, help-seeking efficacy, and help-seeking attitudes—each demonstrated a statistically significant positive correlation with the others. Conversely, mental illness stigma exhibited a statistically significant negative correlation with the remaining four facets. In the analysis using single-mediation models, each of the individual mediator variables—namely, mental illness stigma, help-seeking efficacy, and maintenance of positive mental health—exhibited significant indirect effects. In the multiple-mediation model, two mediator variables—help-seeking efficacy and maintenance of positive mental health—demonstrated significant indirect effects. These findings suggested that the recognition of mental illness exerted an influence on help-seeking attitudes through one or more of these mediators.
Conclusions
By leveraging machine learning techniques for the textual analysis of social media and employing a longitudinal research design with panel data, this study elucidates the potential mechanisms through which the MHL framework influences attitudes toward seeking mental health services. These insights hold significant implications for the design of future interventions and the development of targeted policies aimed at promoting help-seeking behaviors.
There is a relative lack of research, targeted models and tools to manage beaches in estuaries and bays (BEBs). Many estuaries and bays have been highly modified and urbanised, for example port developments and coastal revetments. This paper outlines the complications and opportunities for conserving and managing BEBs in modified estuaries. To do this, we focus on eight diverse case studies from North and South America, Asia, Europe, Africa and Australia combined with the broader global literature. Our key findings are as follows: (1) BEBs are diverse and exist under a great variety of tide and wave conditions that differentiate them from open-coast beaches; (2) BEBs often lack statutory protection and many have already been sacrificed to development; (3) BEBs lack specific management tools and are often managed using tools developed for open-coast beaches; and (4) BEBs have the potential to become important in “nature-based” management solutions. We set the future research agenda for BEBs, which should include broadening research to include greater diversity of BEBs than in the past, standardising monitoring techniques, including the development of global databases using citizen science and developing specific management tools for BEBs. We must recognise BEBs as unique coastal features and develop the required fundamental knowledge and tools to effectively manage them, so they can continue providing their unique ecosystem services.
It is estimated that one-quarter of the world’s population has Metabolic Syndrome (MS)(1), a key driver of growth in healthcare expenditure. Traditional approaches to treating MS through the application of standard dietary recommendations and caloric restriction have had limited success. More recent evidence suggests that novel, anti-inflammatory approaches such as replacing refined carbohydrates and ultra-processed food with unprocessed or minimally processed, lower carbohydrate foods and adapting meal timing and frequency may be more effective(2). The aim of the study was twofold: 1) To determine the effectiveness of anti-inflammatory dietary strategies for long-term weight loss and improvement in metabolic health and 2) To examine the relationships between eating behaviours and long-term weight loss. Twelve-month audit data from a UK based 12-week lifestyle program that focuses the principles of consuming an anti-inflammatory diet was analysed using repeated-measures ANOVA to examine the effects of the program on changes in weight and waist circumference. A quantitative, survey-based research design was used to retrospectively identify relationships between eating behaviours and both anti-inflammatory and pro-inflammatory dietary patterns. Multivariate regression using stepwise method was used to examine differences in weight change based on eating patterns and behaviours. Six hundred and forty-two (N = 642) participants (age = 50.4 ± 12.5 years, female 63.6%, weight = 96.1 kg ± 22.1, BMI 35.2 kg/m2 ± 7.5) demonstrated a weight loss average of 4.49 kg ± 3.78 post-lifestyle program (12 weeks). Survey respondents (N = 64) reported a maximum long term weight loss of 13.9 kg ± 11.9. Weight loss and percentage weight loss after the program was significantly predicted by daily consumption of sweet drinks and grain-based foods. The model predicted one unit increase in daily serving consumption of these foods resulted in less weight lost [2.3 kg (4.5%)]. Seventy one percent of survey respondents had maintained most or all their weight loss for more than 6 months. The model predicted change in consumption of grain-based foods, TFEQ-emotional eating score, consumption of savoury ultra-processed foods, and following an alternative dietary approach after the program were statistically significant in predicting weight loss maintenance (R2 = 0.803, F(4, 20) = 20.376, p < 0.001). The preliminary findings suggest that anti-inflammatory dietary approaches are effective and sustainable for weight loss. Eating behaviour may both support and hinder long term changes in eating patterns and whilst there are significant relationships between eating behaviour and eating patterns, the extent to which dietary patterns drive eating behaviour remains unclear.
A significant proportion of people with clozapine-treated schizophrenia develop ‘checking’ compulsions, a phenomenon yet to be understood.
Aims
To use habit formation models developed in cognitive neuroscience to investigate the dynamic interplay between psychosis, clozapine dose and obsessive–compulsive symptoms (OCS).
Method
Using the anonymised electronic records of a cohort of clozapine-treated patients, including longitudinal assessments of OCS and psychosis, we performed longitudinal multi-level mediation and multi-level moderation analyses to explore associations of psychosis with obsessiveness and excessive checking. Classic bivariate correlation tests were used to assess clozapine load and checking compulsions. The influence of specific genetic variants was tested in a subsample.
Results
A total of 196 clozapine-treated individuals and 459 face-to-face assessments were included. We found significant OCS to be common (37.9%), with checking being the most prevalent symptom. In mediation models, psychosis severity mediated checking behaviour indirectly by inducing obsessions (r = 0.07, 95% CI 0.04–0.09; P < 0.001). No direct effect of psychosis on checking was identified (r = −0.28, 95% CI −0.09 to 0.03; P = 0.340). After psychosis remission (n = 65), checking compulsions correlated with both clozapine plasma levels (r = 0.35; P = 0.004) and dose (r = 0.38; P = 0.002). None of the glutamatergic and serotonergic genetic variants were found to moderate the effect of psychosis on obsession and compulsion (SLC6A4, SLC1A1 and HTR2C) survived the multiple comparisons correction.
Conclusions
We elucidated different phases of the complex interplay of psychosis and compulsions, which may inform clinicians’ therapeutic decisions.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.