We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Sexual and gender minority (SGM) college students endorsed higher psychological distress and worsened mental health outcomes than their cisgender heterosexual peers. Such disparity is exacerbated during the COVID-19 pandemic, during which SGM youth may be sent home to unaccepting environments or presented with fewer healthcare options. The “Black lives matter (BLM)” and “Anti-Asian Hate” also exposed college students disproportionally to more witnessed discrimination and poorer social cohesion, which in turn, might negatively affect the mental health outcomes.
Objectives
The present study aims to explore the mental health outcome profile within SGM college students by (1) identify mental health disparities across different sexual and gender identities and (2) evaluating the impacts of discrimination, social cohesion and other factors on mental health outcomes of college students with different sexual and gender identities.
Methods
The study utilizes the 2020-2021 Healthy Minds Study data with 139,470 college students across 60 U.S. campuses. Multivariable regression models are built with minority status to predict mental health outcome (depression, anxiety, and suicidal ideation).
Results
SGM students reported higher symptoms of depression, anxiety, and suicidal ideation. Besides, SGM individuals having experienced or witnessed discrimination or hostile behaviors due to their race/ethnicity also showed worse mental health outcomes. Noted, perceived stronger social cohesion is a protective factor for lower depression (OR: 0.59; 95%CI: 0.45, 0.78) and anxiety (OR: 0.69; 95%CI: 0.51, 0.93) symptoms in SGM, while perceived weaker social cohesion is a risk factor for depression (OR: 1.37; 95%CI: 1.14, 1.64) and anxiety symptoms (OR:1.32; 95%CI:1.09-1.59) in cisgender heterosexual individuals.
Conclusions
These findings acknowledge the negative impact of discrimination on mental health, highlight the importance of recognizing social cohesion affect differently in SGM and their peers, and enhance the understanding of differential impact of social cohesion to inform public policy and early intervention in vulnerable populations during COVID-19 pandemic.
While comorbidity of clinical high-risk for psychosis (CHR-P) status and social anxiety is well-established, it remains unclear how social anxiety and positive symptoms covary over time in this population. The present study aimed to determine whether there are more than one covariant trajectory of social anxiety and positive symptoms in the North American Prodrome Longitudinal Study cohort (NAPLS 2) and, if so, to test whether the different trajectory subgroups differ in terms of genetic and environmental risk factors for psychotic disorders and general functional outcome.
Methods
In total, 764 CHR individuals were evaluated at baseline for social anxiety and psychosis risk symptom severity and followed up every 6 months for 2 years. Application of group-based multi-trajectory modeling discerned three subgroups based on the covariant trajectories of social anxiety and positive symptoms over 2 years.
Results
One of the subgroups showed sustained social anxiety over time despite moderate recovery in positive symptoms, while the other two showed recovery of social anxiety below clinically significant thresholds, along with modest to moderate recovery in positive symptom severity. The trajectory group with sustained social anxiety had poorer long-term global functional outcomes than the other trajectory groups. In addition, compared with the other two trajectory groups, membership in the group with sustained social anxiety was predicted by higher levels of polygenic risk for schizophrenia and environmental stress exposures.
Conclusions
Together, these analyses indicate differential relevance of sustained v. remitting social anxiety symptoms in the CHR-P population, which in turn may carry implications for differential intervention strategies.
The Dayao Paleolithic site, located in Inner Mongolia on the eastern margin of China's vast northwestern drylands, was a lithic quarry-workshop utilized by Pleistocene human migrants through the region. Determining the age of this activity has previously yielded controversial results. Our magnetostratigraphic and OSL dating results suggest the two artifact-bearing paleosols are correlated with MIS 5 and 7, respectively. Correlating paleoclimatic data with marine δ18O records leads us to conclude that two sandy gravel layers containing many artifacts in the lower part of the Dayao sequence were formed during MIS 9 and 11, if not earlier. Our results reveal that the earliest human occupation at the Dayao site occurred before ca. 400 ka during a relatively warm and moist interglacial period, similar to several subsequent occupations, documenting the earliest and northernmost archaeological assemblage yet reported in China's arid northwest. We conclude that the northward and southward displacements of the East Asian summer monsoon rain belt during past interglacial-glacial cycles were responsible for the discontinuous human occupation detected at the Dayao site. The penetration of this precipitation regime into dryland ecologies via the Huanghe (Yellow River) Valley effectively created a corridor for hominin migration into China's arid northwest.
The seroprevalence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) IgG antibody was evaluated among employees of a Veterans Affairs healthcare system to assess potential risk factors for transmission and infection.
Methods:
All employees were invited to participate in a questionnaire and serological survey to detect antibodies to SARS-CoV-2 as part of a facility-wide quality improvement and infection prevention initiative regardless of clinical or nonclinical duties. The initiative was conducted from June 8 to July 8, 2020.
Results:
Of the 2,900 employees, 51% participated in the study, revealing a positive SARS-CoV-2 seroprevalence of 4.9% (72 of 1,476; 95% CI, 3.8%–6.1%). There were no statistically significant differences in the presence of antibody based on gender, age, frontline worker status, job title, performance of aerosol-generating procedures, or exposure to known patients with coronavirus infectious disease 2019 (COVID-19) within the hospital. Employees who reported exposure to a known COVID-19 case outside work had a significantly higher seroprevalence at 14.8% (23 of 155) compared to those who did not 3.7% (48 of 1,296; OR, 4.53; 95% CI, 2.67–7.68; P < .0001). Notably, 29% of seropositive employees reported no history of symptoms for SARS-CoV-2 infection.
Conclusions:
The seroprevalence of SARS-CoV-2 among employees was not significantly different among those who provided direct patient care and those who did not, suggesting that facility-wide infection control measures were effective. Employees who reported direct personal contact with COVID-19–positive persons outside work were more likely to have SARS-CoV-2 antibodies. Employee exposure to SARS-CoV-2 outside work may introduce infection into hospitals.
White matter abnormalities have been repeatedly reported in both schizophrenia and bipolar disorder (BD) diseases from diffusion tensor imaging (DTI) studies respectively, while the empirical evidences about the diagnostic specificity of white matter abnormalities in these disorders are still limited.
Objectives
25 patients with paranoid schizophrenia and 18 patients with bipolar mania were recruited from the in-patient unit of the Mental Health Centre, West China Hospital, China.
Patients were diagnosed according to the criteria of Diagnostic and Statistical Manual of Mental Disorders-Version IV (DSM- IV). 30 healthy controls were recruited from the community by means of leaflets distributed throughout Chengdu city.
Aims
This study sought to investigate the alterations in fractional anisotropy (FA) in white matter throughout the entire brain of patients from Chengdu, China with paranoid schizophrenia and bipolar mania.
Methods
Diffusion tensor imaging (DTI) was used to assess white matter integrity in patients with paranoid schizophrenia and bipolar mania, as well as in normal controls. The differences in FA were measured by use of voxel-based analysis.
Results
Reduced FA was found in the left posterior corona radiate (PCR) in patients with bipolar mania and paranoid schizophrenia compared to the controls. Patients with bipolar mania also showed a significant reduction in FA in right posterior corona radiate and in right anterior thalamic radiation (ATR).
Conclusions
Common abnormalities in the left PCR might imply an overlap in white matter pathology of both diseases and might be related to the shared risk factors for both disorders.
Although the deviations of brain volume deficits in sporadic and familial first-episode schizophrenia patients (FEP) had been presented, the difference of brain asymmetries remained unidentified.
Objectives
To assess the potential differences of volumetric asymmetries of gray matter (GM) and white matter (WM) between groups.
Aims
To find out the different injury alteration of sporadic FEP and familial FEP.
Methods
42 sporadic and 30 familiar drug-naïve FEP with and 72 matched normal controls (NC) were recruited. Participants were assessed with neuropsychological tests and scanned by a 3.0T MRI to obtain T1-weighted and DTI images. Lateralization distribution maps of GM and WM volume were generated by employing optimized voxel-based morphometry. The asymmetries were analyzed by comparing calculating Laterality Index (LI) voxel by voxel.
Results
All three groups showed similar overall brain torque. Familiar FEP have more regional extensive GM asymmetry brain lesions compared to sporadic FEP. There was no shared regional lesion between two groups. LIGM and LIWM in right superior temporal were negatively correlated. Significant negative correlations were also found between LIGM of left superior parietal lobule and LIWM of right superior parietal lobule, and between LIGM of right inferior parietal lobule and LIWM of left inferior parietal lobule. The asymmetry in distinct brain regions were related to cognitive deficits especially in the domains of language and memory.
Conclusions
The two patient groups had different alteration in injuries of brain asymmetry. Familiar FEP has more GM extensive asymmetry brain region, which may correlate with their high genetic burdens.
Many MRI studies have cited major depression, with or without anti-depressive treatment, associated with structural plasticity changing in several brain regions. Few of these studies researched the effect of the anti-depressive treatment, electroconvulsive therapy (ECT), on depression.
Objective
To assess the influence of ECT on the brain structure change during the treatment process by utilizing the voxel-based morphometry (VBM) analysis.
Aims
To determine whether ECT alter brain structure.
Methods
We performed HAMD ratings and MRI scans on 12 depressive patients during ECT, analyzing the data by VBM with SPM8 software's family-wise error correction (FWE).
Results
The researchers found volumes changes in white matter in 37 regions between pre-ECT and post-ECT1, but only one region changing between pre-ECT and post-ECT8. Seven regions changing in grey matter between pre-ECT and post-ECT 1⌧but none regions changing between pre-ECT and post-ECT8.
Conclusions
The density changes in several brain regions after a single ECT stimuli, but return to the original level after completing the eighth ECT. Our finding supports that ECT may play a temporary role in treating major depression but do not permanently alter the structures of brain.
To investigate the difference of visual pattern memory among first-episode treatment-naive patients with deficit and nondeficit schizophrenia.
Methods:
199 first-episode treatment-naive patients with schizophrenia, and 148 controls were recruited. Schedule for the Deficit Syndrome (SDS) was used to categorize the patients into deficit or nondeficit subtype. Pattern Recognition Memory (PRM) was used to test the immediate and delayed mode of visual pattern memory. Positive and Negative Symptom Scale PANSS was used to assess the degree of patients symptoms.
Results:
The PRM immediate mode and delayed mode percent correct was significant lower and time latency was significant longer in two subtypes of patients. There were no significant difference in the performance of immediate mode of PRM between deficit and nondeficit patients[(86.49 ± 15.34) vs. (87.28 ± 16.00), P=0.960]. But the impairment was more severe in patients with deficit schizophrenia [percent correct (63.10 ± 19.17) vs. (70.69 ± 15.34), P< 0.001 time latency 5086.80 ± 7528.54 vs. 3527.40 ± 3649.08 P=0.024] in the delayed mode. and PRM has no significant correlation with the negative symptoms of deficit schizophrenia.
Conclusion:
There were significant difference in the performance of immediate and delayed mode of PRM between patients and controls. The difference between first-episode treatment-naïve deficit schizophrenia and nondeficit schizophrenia was only in delayed mode of PRM, and has no correlation with the primary negative symptoms. The deficit schizophrenia is a subtype of schizophrenia with unique impairment of cognitive functions.
We present a 53-year-old male with the rare constellation of stress cardiomyopathy, dextrocardia with situs inversus and anomalous coronary anatomy. This case highlights the difficulties faced when managing patients with uncommon disorders and demonstrates a rare overlap of acquired and CHD.
The association between eosinophil count and cholelithiasis among people with Clonorchis sinensis infection is still uncertain. We conducted a cross-sectional study to investigate the associations among Clonorchis sinensis infection, eosinophil count and cholelithiasis. The study included 4628 participants from January to December 2018. The levels of eosinophil count were divided into four groups according to the quartiles of eosinophil count. Spearman's rank correlation was performed to assess the association between eosinophil counts and Clonorchis sinensis egg counts. Multiple regression analysis was performed to evaluate the relationships among C. sinensis infection, eosinophil count and cholelithiasis after adjusting for three models. The prevalence of C. sinensis infection was 38.72% (1792/4628), and the prevalence of cholelithiasis was 6.03% (279/4628). The infection rate of C. sinensis was higher in the cholelithiasis group than in the non-cholelithiasis group (63.08% vs. 37.16%, P < 0.001). Significant differences were found among various eosinophil count quartiles for C. sinensis infection, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA) and non-alcoholic fatty liver disease (NAFLD) (all P < 0.001). A significant positive correlation was found between eosinophil count and log-transformed C. sinensis egg count (r = 0.9477, P < 0.001). Multiple logistic regression analysis revealed that light and moderate intensities of C. sinensis infection were associated with cholelithiasis (P < 0.01 and P < 0.001, respectively), and C. sinensis infection with eosinophil count ranging from 0.05 to 0.5 × 109/l were associated with cholelithiasis (P < 0.05). In conclusion, our findings suggest that the light and moderate infections of C. sinensis with eosinophil count ranging from 0.05 to 0.5 × 109/l may be associated with a higher risk of cholelithiasis.
Triploid and pentaploid breeding is of great importance in agricultural production, but it is not always easy to obtain double ploidy parents. However, in fishes, chromosome ploidy is diversiform, which may provide natural parental resources for triploid and pentaploid breeding. Both tetraploid and hexaploid exist in Schizothorax fishes, which were thought to belong to different subfamilies with tetraploid Percocypris fishes in morphology, but they are sister genera in molecule. Fortunately, the pentaploid hybrid fishes have been successfully obtained by hybridization of Schizothorax wangchiachii (♀, 2n = 6X = 148) × Percocypris pingi (♂, 2n = 4X = 98). To understand the genetic and morphological difference among the hybrid fishes and their parents, four methods were used in this study: morphology, karyotype, red blood cell (RBC) DNA content determination and inter-simple sequence repeat (ISSR). In morphology, the hybrid fishes were steady, and between their parents with no obvious preference. The chromosome numbers of P. pingi have been reported as 2n = 4X = 98. In this study, the karyotype of S. wangchiachii was 2n = 6X = 148 = 36m + 34sm + 12st + 66t, while that the hybrid fishes was 2n = 5X = 123 = 39m + 28sm + 5st + 51t. Similarly, the RBC DNA content of the hybrid fishes was intermediate among their parents. In ISSR, the within-group genetic diversity of hybrid fishes was higher than that of their parents. Moreover, the genetic distance of hybrid fishes between P. pingi and S.wangchiachii was closely related to that of their parental ploidy, suggesting that parental genetic material stably coexisted in the hybrid fishes. This is the first report to show a stable pentaploid F1 hybrids produced by hybridization of a hexaploid and a tetraploid in aquaculture.
In this paper, a novel single-cavity triangular substrate-integrated waveguide (TSIW) dual-band filter loading a complementary triangular split ring resonator (CTSRR) is proposed, which has three transmission zeros (TZs) in the stopband in total. The dual-band response is achieved by the CTSRR and the degenerate modes of the TSIW cavity. In order to control the TZs, we propose two adjustment techniques, shift feeding technique and adding via perturbation. In addition, the CTSRR etched on the surface can produce a new TZ in the upper first-passband. Finally, a dual-band filter with three TZs is simulated, fabricated, and measured. There is a good agreement between the simulated results and measured ones.
Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) has a great potential for management of Leptinotarsa decemlineata. An important first step is to discover possible RNA-interference (RNAi)-target genes effective against larvae, especially the old larvae. In the present paper, five putative Broad-Complex (BrC) cDNAs (Z1-Z4, and Z6) were identified in L. decemlineata. The expression of the five LdBrC isoforms was suppressed by juvenile hormone signaling, whereas the transcription was upregulated by 20-hydroxyecdysone signaling at the fourth (final) instar larval stage. Feeding of bacterially expressed dsBrC (derived from a common fragment of the five LdBrC variants) in the third- and fourth-instar larvae successfully knocked down the target mRNAs. For the fourth-instar LdBrC RNAi hypomorphs, they had a higher larval mortality compared with the controls. Moreover, most dsBrC-fed beetles did not pupate normally. After removal of the apolysed larval cuticle, a miniature adult was found. The adult head, compound eyes, prothorax, mesothorax, metathorax were found on the dorsal view. Distinct adult cuticle pigmentation was seen on the prothorax. The mouthparts, forelegs, midlegs, and hindlegs could be observed on the ventral view of the miniature adults. For the third-instar LdBrC RNAi specimens, around 20% moribund beetles remained as prepupae and finally died. Therefore, LdBrC is among the most attractive candidate genes for RNAi to control the fourth-instar larvae in L. decemlineata.
Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high $Z$ materials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly. Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell (PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factor $\unicode[STIX]{x1D6FE}$ and the relevant initial energy $E_{0}$. It is shown that a maximum energy up to 15.2 GeV is promising with $\unicode[STIX]{x1D6FE}=46$ and $E_{0}=1.45~\text{GeV}$ on the existing short pulse laser facilities.
Monolithic large-aperture diffraction grating tiling is desired to increase the output capability of multi-kilojoule petawatt laser facilities. However, the wavefront errors of input pulse and gratings will degrade the focal spot quality and the compressibility of the output pulse. In this work, the effects of wavefront error of input pulse, deformation and wave aberration of the grating for the large-aperture tiled-grating compressor are investigated theoretically. A series of numerical simulations are presented to discuss the changing trends of focal spot energy caused by wavefront error of input pulse and obtain the error tolerance for specific goals. The influences of coating stress and the wave aberration of holographic exposure gratings on the diffraction wavefront are also discussed. Some advice is proposed for improving the performance of large-aperture tiled-grating. This work paves the way for the design of practical large-aperture tiled-grating compressor for ultrahigh intensity laser facilities in the future.
This paper reports an investigation of the relationship between spray characteristics and a nozzles’ internal structure to reveal the working mechanism of anti-drift spray nozzles. Three important structural factors were taken into account, the diameter of the inner chamber, the angle of V-shaped slot and the relative kerf depth. Three-dimensional models of the fan nozzles were set up using Solidworks software and the corresponding real nozzles were produced using high-precision 3-D printer. The flow fields inside the nozzles were simulated using the software FLUENT. By comparing the flow fields inside and outside the nozzles under the conditions of the same inner structural parameter, the relationships between spraying flow characteristics and different structural parameters was made clear, and provides a reference for optimal design of anti-drift spray nozzles.
Relativistic collisionless shock charged particle acceleration is considered as a possible origin of high-energy cosmic rays. However, it is hard to explore the nature of relativistic collisionless shock due to its low occurring frequency and remote detecting distance. Recently, there are some works attempt to solve this problem by generating relativistic collisionless shock in laboratory conditions. In laboratory, the scheme of generation of relativistic collisionless shock is that two electron–positron pair plasmas knock each other. However, in laboratory, the appropriate pair plasmas have been not generated. The 10 PW laser pulse maybe generates the pair plasmas that satisfy the formation condition of relativistic collisionless shock due to its ultrahigh intensity and energy. In this paper, we study the positron production by ultraintense laser high Z target interaction using numerical simulations, which consider quantum electrodynamics effect. The simulation results show that the forward positron beam up to 1013/kJ can be generated by 10 PW laser pulse interacting with lead target. The estimation of relativistic collisionless shock formation shows that the positron yield satisfies formation condition and the positron divergence needs to be controlled. Our results indicate that the generation of relativistic collisionless shock by 10 PW laser facilities in laboratory is possible.
Tuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.