We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cryphodera guangdongensis n. sp. was collected from the soil and roots of Schima superba in Guangdong province, China. The new species is characterised by having a nearly spherical female, with dimensions of length × width = 532.3 (423.8–675.3) × 295.6 (160.0–381.2) μm, stylet length of 35.7 (31.1–42.1) μm, protruding vulval lips, a vulval slit measuring 54.2 (47.4–58.9) μm, an area between the vulva and anus that is flat to concave, and a vulva–anus distance 49.3 (41.1–57.6) μm. The male features two lip annules, a stylet length of 31.7 (27.4–34.8) μm and basal knobs that are slightly projecting anteriorly, while lateral field is areolated with three incisures and spicules length of 27.1 (23.7–31.0) μm. The second stage juvenile is characterised by a body length of 506.1 (441.8–564.4) μm long, two to three lip annules, a stylet length 31.2 (29.7–33.2) μm which is well developed, basal knobs projecting anteriorly, a lateral field that is areolate with three incisures, and a narrow rounded tail measuring 63.2 (54.2–71.3) μm long, with a hyaline region of 35.6 (27.4–56.6) μm long that is longer than the stylet. Based on morphology and morphometrics, the new species is closely related to C. sinensis and C. japonicum within the genus Cryphodera. The phylogenetic trees constructed based on the ITS-rRNA, 28S-rRNA D2–D3 region, and the partial COI gene sequences indicate that the new species clusters with other Cryphodera species but maintains in a separated subgroup. A key to the species of the genus Cryphodera is also provided in this study.
A novel entomopathogenic nematode (EPN) species, Steinernema tarimense n. sp., was isolated from soil samples collected in a Populus euphratica forest located in Yuli County within the Tarim Basin of Xinjiang, China. Integrated morphological and molecular analyses consistently place S. tarimense n. sp. within the ‘kushidai-clade’. The infective juvenile (IJ) of new species is characterized by a body length of 674–1010 μm, excretory pore located 53–80 μm from anterior end, nerve ring positioned 85–131 μm from anterior end, pharynx base situated 111–162 μm from anterior end, a tail length of 41–56 μm, and the ratios D% = 42.0–66.6, E% = 116.2–184.4, and H% = 25.5–45.1. The first-generation male of the new species is characterized by a curved spicule length of 61–89 μm, gubernaculum length of 41–58 μm, and ratios D% = 36.8–66.2, SW% = 117.0–206.1, and GS% = 54.8–82.0. Additionally, the tail of first-generation female is conoid with a minute mucron. Phylogenetic analyses of ITS, 28S, and mt12S sequences demonstrated that the three isolates of S. tarimense n. sp. are conspecific and form a sister clade to members of the ‘kushidai-clade’ including S. akhursti, S. anantnagense, S. kushidai, and S. populi. Notably, the IJs of the new species exhibited faster development at 25°C compared to other Steinernema species. This represents the first described of an indigenous EPN species from Xinjiang, suggesting its potential as a novel biocontrol agent against local pests.
Haemonchus contortus is a parasitic nematode that causes significant economic losses in ruminant livestock worldwide. In this study, we assessed the global genetic diversity and population structure of H. contortus using mitochondrial COX1 and ribosomal ITS2 sequences retrieved from the NCBI GenBank database. In total, 324 haplotypes of the COX1 and 72 haplotypes of the ITS2 were identified. The haplotype diversity values were all higher than 0.5, and the nucleotide diversity values were higher than 0.005. The Tajima’s D value for COX1 (−1.65634) was higher than that for ITS2 (−2.60400). Fu’s Fs, Fu and Li’s D (FLD), and Fu and Li’s F (FLF) values also showed high negative values, indicating a high probability of future population growth. In addition, the high fixation index (FST) value suggests significant genetic differentiation among populations. The haplotype networks of H. contortus populations based on COX1 sequences revealed clear geographic clustering, whereas ITS2 sequences showed more haplotype admixture across regions. The results of phylogenetic analyses were consistent with the haplotype networks. These findings highlighted that H. contortus populations exhibit significant genetic variation and are undergoing rapid population expansion, with clear genetic differences across geographic regions. This study established critical baseline data for future molecular epidemiology studies, which could guide region-specific parasite surveillance and targeted control strategies, thus helping to mitigate the risk of cross-border parasite transmission and drug resistance.
The hypersonic vehicle surfaces are subjected to intense thermal loads during atmospheric re-entry. Such conditions induce material ablation and structural deformation, potentially causing changes to aerodynamic configuration that critically endanger mission integrity. In this paper, a mathematical model of thermochemical non-equilibrium magnetohydrodynamics (MHD) at low magnetic Reynolds number is introduced to investigate the effects of MHD on the flow field. Variation of the magnetic pole angle (θ), the flow field profiles are quantitatively analysed, including gas component distributions and aerodynamic heating characteristics. Results indicate that the heat flux at the stagnation point initially decreases and then increases with θ increasing, reaching a minimum at θ = 60°. A portion of the heat flux from the blunt position is transferred to the shoulder (α between 30° and 60°). Notably, the shock standoff distance also shows a non-monotonic trend with θ increasing, peaking at θ = 30°, mirroring the effect of θ on the stagnation point heat flux. As θ increases, the component of the Lorentz force along the X-direction gradually increases, with its peak position corresponding to the shock standoff distance. The electrons and nitrogen atoms are primarily concentrated at the blunt nose, while nitric oxide and oxygen atoms are predominantly distributed along the vehicle wall. The dissociation region of the gas is influenced by the shock standoff distance, which increases as the shock standoff distance increases. At θ = 30°, the concentration of oxygen atoms, nitrogen atoms, nitric oxide molecules and electrons on the stagnation point line reaches its maximum. The present study provides a theoretical foundation for the application of MHD thermal protection methods on hypersonic vehicles.
This study explored mental workload recognition methods for carrier-based aircraft pilots utilising multiple sensor physiological signal fusion and portable devices. A simulation carrier-based aircraft flight experiment was designed, and subjective mental workload scores and electroencephalogram (EEG) and photoplethysmogram (PPG) signals from six pilot cadets were collected using NASA Task Load Index (NASA-TLX) and portable devices. The subjective scores of the pilots in three flight phases were used to label the data into three mental workload levels. Features from the physiological signals were extracted, and the interrelations between mental workload and physiological indicators were evaluated. Machine learning and deep learning algorithms were used to classify the pilots’ mental workload. The performances of the single-modal method and multimodal fusion methods were investigated. The results showed that the multimodal fusion methods outperformed the single-modal methods, achieving higher accuracy, precision, recall and F1 score. Among all the classifiers, the random forest classifier with feature-level fusion obtained the best results, with an accuracy of 97.69%, precision of 98.08%, recall of 96.98% and F1 score of 97.44%. The findings of this study demonstrate the effectiveness and feasibility of the proposed method, offering insights into mental workload management and the enhancement of flight safety for carrier-based aircraft pilots.
Temporal variability and methodological differences in data normalization, among other factors, complicate effective trend analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater surveillance data and its alignment with coronavirus disease 2019 (COVID-19) clinical outcomes. As there is no consensus approach for these analyses yet, this study explored the use of piecewise linear trend analysis (joinpoint regression) to identify significant trends and trend turning points in SARS-CoV-2 RNA wastewater concentrations (normalized and non-normalized) and corresponding COVID-19 case rates in the greater Las Vegas metropolitan area (Nevada, USA) from mid-2020 to April 2023. The analysis period was stratified into three distinct phases based on temporal changes in testing protocols, vaccination availability, SARS-CoV-2 variant prevalence, and public health interventions. While other statistical methodologies may require fewer parameter specifications, joinpoint regression provided an interpretable framework for characterization and comparison of trends and trend turning points, revealing sewershed-specific variations in trend magnitude and timing that also aligned with known variant-driven waves. Week-level trend agreement corroborated previous findings demonstrating a close relationship between SARS-CoV-2 wastewater surveillance data and COVID-19 outcomes. These findings guide future applications of advanced statistical methodologies and support the continued integration of wastewater-based epidemiology as a complementary approach to traditional COVID-19 surveillance systems.
Protein fermentation in the human gut is often associated with adverse health effects. Hence, understanding the fermentation characteristics of dietary undigested proteins is important for a comprehensive nutritional value of foods. This study investigated the protein fermentation kinetics of diet-derived proteins from thirty-one different foods using an in vitro model and human faecal inoculum. The undigested diet-derived protein substrate originated from porcine ileal digesta obtained from assessment of the digestible indispensable amino acid score (DIAAS) of the foods. Significant variations in fermentation kinetic parameters, particularly in maximum gas production rate (Rmax) and time to reach cumulative gas production (GP) from the substrate (TGPs), were observed. The Rmax ranged from 15·5 (se 0·7) ml/h for wheat bran-derived to 24·5 (se 0·9) ml/h for oatmeal-derived proteins. Egg-derived proteins had the shortest TGPs (14·7 (se 0·7) h), while mushroom-derived proteins had the longest (27·6 (se 7·1) h). When foods were categorised into five groups (‘animal protein’, ‘grains’, ‘legumes’, ‘fungi, algae and microorganisms’ and ‘others’), no significant differences were found in fermentation kinetics parameters. Samples were additionally incubated with porcine inoculum to assess potential donor-species effects. Human inoculum showed significantly lower Rmax, cumulative GP and microbiota turnover than porcine inoculum, indicating reduced fermentative activity. Linear regression analysis revealed correlations between human and porcine-derived inoculum only for Rmax (R2 = 0·78, P < 0·01) and TGPs (R² = 0·17, P < 0·05). These findings underscore the importance of using human inoculum in in vitro studies to better predict health implications of foods with DIAAS values.
Rationality is a fundamental pillar of Economics. It is however unclear if this assumption holds when decisions are made under stress. To answer this question, we design two laboratory experiments where we exogenously induce physiological stress in participants and test the consistency of their choices with economic rationality. In both experiments we induce stress with the Cold Pressor test and measure economic rationality by the consistency of participants’ choices with the Generalized Axiom of Revealed Preference (GARP). In the first experiment, participants delay the decision-making task for 20 min until the cortisol level peaks. We find significant differences in cortisol levels between the stressed group and the placebo group which, however, do not affect the consistency of choices with GARP. In a second experiment, we study the immediate effect of the stressor on rationality. Overall, results from the second experiment confirm that rationality is not impaired by the stressor. If anything, we observe that compared to the placebo group, participants are more consistent with rationality immediately after the stressor. Our findings provide strong empirical support for the robustness of the economic rationality assumption under physiological stress.
Let $\mathcal H$ be a complex, separable Hilbert space, and set . When $\dim \, \mathcal H$ is finite, we characterise the set and its norm-closure . In the infinite-dimensional setting, we characterise the intersection of with the set of biquasitriangular operators, and we exhibit an index obstruction to belonging to .
Understanding protein fermentation in the hindgut of pigs is essential due to its implications for health, and ileal digesta is commonly used to study this process in vitro. This study aimed to assess the feasibility of utilising in vitro digested residues as a replacement for ileal digesta in evaluating the protein fermentation potential. In vitro residues from cottonseed meal, maize germ meal, peanut meal, rapeseed cake, rapeseed meal, soyabean meal and sunflower meal were analysed using a modified gas production (GP) technique and curve fitting model to determine their fermentation dynamics and compare with the use of ileal digesta. Significant variations were observed in GP parameters between in vitro digested residues, indicating differences in nitrogen utilisation by fecal microbiota. Soyabean meal and sunflower meal exhibited the highest maximum GP rates (Rmax), with values of 29·5 ± 0·6 and 28·0 ± 1·2 ml/h, respectively, while maize germ meal showed slowest protein utilisation (17·3 ± 0·2 ml/h). A positive relationship was found between the Rmax of in vitro residues and ileal digesta (R2 = 0·85, P < 0·01). However, GP potential (GPs) showed a tendency for a negative relationship (R2 = 0·39, P < 0·1), likely due to narrow observed GPs values and the presence of varied endogenous proteins in ileal digesta. Our results demonstrate the potential of using in vitro digested residues as a substitute for ileal digesta in assessing the fermentation potential of protein ingredients, particularly regarding the rate of protein fermentation.
Unmanned aerial vehicle (UAV) formations for bearing-only passive detection are increasingly important in modern military confrontations, and the array of the formation is one of the decisive factors affecting the detection accuracy of the system. How to plan the optimal geometric array in bearing-only detection is a complex nondeterministic polynomial problem, and this paper proposed the distributed stochastic subgradient projection algorithm (DSSPA) with layered constraints to solve this challenge. Firstly, based on the constraints of safe flight altitude and fixed baseline, the UAV formation is layered, and the system model for bearing-only cooperative localisation is constructed and analysed. Then, the calculation formula for geometric dilution of precision (GDOP) in the observation plane is provided, this nonlinear objective function is appropriately simplified to obtain its quadratic form, ensuring that it can be adapted and used efficiently in the system model. Finally, the proposed distributed stochastic subgradient projection algorithm (DSSPA) combines the idea of stochastic gradient descent with the projection method. By performing a projection operation on each feasible solution, it ensures that the updated parameters can satisfy the constraints while efficiently solving the convex optimisation problem of array planning. In addition to theoretical proof, this paper also conducts three simulation experiments of different scales, validating the effectiveness and superiority of the proposed method for bearing-only detection array planning in UAV formations. This research provides essential guidance and technical reference for the deployment of UAV formations and path planning of detection platforms.
Neurocysticercosis is a poorly understood infection of the central nervous system with Taenia solium larva, and the treatment often fails to kill all the parasitic larva. Most research on this infection has used patient-level data, looking at summaries of the encysted parasitic cysticercus burden. Cyst-level analysis is needed to identify factors that impact individual cyst trajectories and how that may vary based on characteristics of the patient, infection and cyst being followed. We disaggregated data on 221 cysts from 117 patients who participated in a trial evaluating the impact of albendazole treatment to identify factors that impact cyst evolution over time from the active to the degenerating and calcified phases, and eventual resolution. We found that having calcified cysts at baseline was associated with a faster rate of transition from the degenerative phase to calcified phase or resolution. Age and sex were not associated with cyst evolution in the main effect analysis, but after stratifying on treatment we found that the direction of some associations by patient age and sex was reversed for patients in the albendazole arm compared to those in the placebo arm. These findings suggest that differences in host immune response by sex and age as well as by past exposure, potentially indicated by having calcified cysts together with active cysts at baseline, are important to cyst evolution and may be modified by treatment. Future research is needed to assess if these differences suggest distinct treatment recommendations.
Centanafadine (CTN) is a potential first-in-class norepinephrine/dopamine/serotonin triple reuptake inhibitor (NDSRI). The efficacy, safety, and tolerability of CTN sustained release (SR) for adults with ADHD was demonstrated in 2 pivotal phase 3 trials (Adler LA, et al. J Clin Psychopharmacol. 2022;42:429-39).
Methods
Adults (18–55 years) meeting DSM-5 criteria for ADHD enrolled in these double-blind, multicenter, placebo-controlled trials and randomized to treatment if ADHD Investigator Symptom Rating Scale (AISRS) score was ≥28 at screening (if not receiving pharmacologic treatment for ADHD) or ≥22 at screening and ≥28 at baseline (BL) (if receiving treatment). Having had no prior benefit from ≥2 ADHD therapies of 2 different classes, taking prohibited medications, and positive alcohol/drug screen were exclusionary. Trials had 4 periods: (1) screening and washout (≤28 days), (2) single-blind placebo run-in (1 week), (3) double-blind treatment (6 weeks), and (4) follow-up (10 days after last dose). Patients with ≥30% improvement in the Adult ADHD Self-report Scale (ASRS) from start to end of screening were screen failures; those with ≥30% ASRS improvement from start to end of placebo run-in were terminated early. Patients were randomized 1:1:1 to twice-daily CTN SR (200 or 400 mg total daily dose [TDD]) or matching placebo. The 200 mg/d group received CTN SR 200 mg TDD from days 1–42; the 400 mg/d group received 200 mg TDD on days 1–7, and increased to 400 mg TDD on day 8. This analysis assessed CTN SR effects based on median BL AISRS severity score (<38 or ≥38) using a mixed model for repeated measures analysis. Least squares mean (LSM) differences (95% CI) from BL at day 42 were compared between individual CTN SR dose groups and placebo, tested at a 2-sided significance level of 0.05.
Results
In total, 859 patients were randomized (200 mg TDD, n=287; 400 mg TDD, n=287; placebo, n=285). Significant LSM differences on the AISRS were observed vs placebo in the overall population (200 mg TDD and 400 mg TDD, P<0.0001 for each), in the low BL severity (200 mg TDD [P=0.016]; 400 mg TDD [P=0.019]), and in the high BL severity (200 mg TDD [P=0.005]; 400 mg TDD [P=0.003]) populations at day 42. Significant LSM differences vs placebo (P<0.01) began at day 7 (200 mg) and day 14 (400 mg) overall, remaining significant to day 42. Significant LSM differences were observed vs placebo (P<0.05) from day 14 (400 mg TDD) and day 21 (200 mg) in the low severity populations, and from day 21 (400 mg TDD) and day 7 (200 mg TDD) in the high severity population, remaining significant (P<0.05) to day 42.
Conclusions
CTN SR, a potential first-in-class NDSRI, is efficacious for patients with adult ADHD of low or high BL symptom severity, with significant improvements observed vs placebo within the first 3 weeks.
Exploratory process factor analysis (EPFA) is a data-driven latent variable model for multivariate time series. This article presents analytic standard errors for EPFA. Unlike standard errors for exploratory factor analysis with independent data, the analytic standard errors for EPFA take into account the time dependency in time series data. In addition, factor rotation is treated as the imposition of equality constraints on model parameters. Properties of the analytic standard errors are demonstrated using empirical and simulated data.
The composite direct product (CDP) model is a multiplicative model for multitrait-multimethod (MTMM) designs. It is extended to incomplete MTMM correlation matrices where some trait-method combinations are not available. Rules for omitting trait-method combinations without resulting in an indeterminate model are also suggested. Maximum likelihood estimation and the log absolute correlation procedure are used to fit the model, and are found to yield similar results. The balanced incomplete MTMM design tends to yield more accurate estimates than the randomly missing design.
This paper proposes a cooperative midcourse guidance law with target changing and topology switching for multiple interceptors intercepting targets in the case of target loss and communication topology switching. Firstly, a three-dimensional guidance model is established and a cooperative trajectory shaping guidance law is given. Secondly, the average position consistency protocol of virtual interception points is designed for communication topology switching, and the convergence of the average position of virtual interception points under communication topology switching is proved by Lyapunov stability theory. Then, in the case of the target changing, the target handover law and the handover phase guidance law are designed to ensure the acceleration smoothing, at last, the whole cooperative midcourse guidance law is given based on the combination of the above guidance laws. Finally, numerical simulation results show the effectiveness and the superiority of the proposed cooperative midcourse guidance law.
Soluble Intercellular Adhesion Molecule-1 (sICAM-1) has emerged as an inflammatory biomarker of many essential functions. We investigated the level of sICAM-1 influenced by Clonorchis sinensis (C. sinensis) co-infection in chronic hepatitis B (CHB) patients to explore the degree of liver tissue inflammation and liver function damage after co-infection. The study included data from patients with C. sinensis mono-infection (n=27), hepatitis B virus (HBV) mono-infection (n=32), C. sinensis and HBV co-infection (n=24), post-hepatitis B liver cirrhosis (n=18), post-hepatitis B liver cirrhosis co-infected with C. sinensis (n=16), and healthy controls (n=39). The level of sICAM-1 was measured with specific enzyme-linked immunosorbent assay method. Compared to the healthy control group, all the experimental groups had significantly higher serum sICAM-1 levels. The levels of sICAM-1 in co-infected groups were significantly higher compared to the mono-infection groups and were positively correlated with the levels of glutamate aminotransferase (ALT) and aspartate aminotransferase (AST). Our research findings confirmed that co-infection could exacerbate liver tissue inflammation and liver function damage in patients, could raise the sICAM-1 level, and may lead to the chronicity of HBV infection. These results provide clues for pathological mechanism study and formulating treatment plans.
We present direct numerical simulation (DNS) and modelling of incompressible, turbulent, generalized Couette–Poiseuille flow. A particular example is specified by spherical coordinates $(Re,\theta,\phi )$, where $Re = 6000$ is a global Reynolds number, $\phi$ denotes the angle between the moving plate, velocity-difference vector and the volume-flow vector and $\tan \theta$ specifies the ratio of the mean volume-flow speed to the plate speed. The limits $\phi \to 0^\circ$ and $\phi \to 90^\circ$ give alignment and orthogonality, respectively, while $\theta \to 0^\circ,\ \theta \to 90^\circ$ correspond respectively to pure Couette flow in the $x$ direction and pure Poiseuille flow at angle $\phi$ to the $x$ axis. Competition between the Couette-flow shear and the forced volume flow produces a mean-velocity profile with directional twist between the confining walls. Resultant mean-speed profiles relative to each wall generally show a log-like region. An empirical flow model is constructed based on component log and log-wake velocity profiles relative to the two walls. This gives predictions of four independent components of shear stress and also mean-velocity profiles as functions of $(Re,\theta,\phi )$. The model captures DNS results including the mean-flow twist. Premultiplied energy spectra are obtained for symmetric flows with $\phi =90^\circ$. With increasing $\theta$, the energy peak gradually moves in the direction of increasing $k_x$ and decreasing $k_z$. Rotation of the energy spectrum produced by the faster moving velocity near the wall is also observed. Rapid weakening of a spike maxima in the Couette-type flow regime indicates attenuation of large-scale roll structures, which is also shown in the $Q$-criterion visualization of a three-dimensional time-averaged flow.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
The occurrence of depression in adolescence, a critical period of brain development, linked with neuroanatomical and cognitive abnormalities. Neuroimaging studies have identified hippocampal abnormalities in those of adolescent patients. However, few studies have investigated the atypically developmental trends in hippocampal subfields in adolescents with depression and their relationships with cognitive dysfunctions.
Objectives
To explore the structural abnormalities of hippocampal subfields in patients with youth depression and examine how these abnormalities associated with cognitive deficits.
Methods
We included a sample of 79 first-episode depressive patients (17 males, age = 15.54±1.83) and 71 healthy controls (23 males, age = 16.18±2.85). The severity of these adolescent patients was assessed by depression scale, suicidal risk and self-harm behavior. Nine cognitive tasks were used to evaluate memory, cognitive control and attention abilities for all participants. Bilateral hippocampus were segmented into 12 subfields with T1 and T2 weighted images using Freesurfer v6.0. A mixed analysis of variance was performed to assess the differences in subfields volumes between all patients and controls, and between patients with mild and severe depression. Finally, LASSO regression was conducted to explore the associations between hippocampal subfields and cognitive abnormalities in patients.
Results
We found significant subfields atrophy in the CA1, CA2/3, CA4, dentate gyrus, hippocampal fissure, hippocampal tail and molecular layer subfields in patients. For those patients with severe depression, hippocampal subfields showed greater extensive atrophy than those in mild, particularly in CA1-4 subfields extending towards the subiculum. These results were similar across various severity assessments. Regression indicated that hippocampal subfields abnormalities had the strongest associations with memory dysfunction, and relatively week associations with cognitive control and attention. Notably, CA4 and dentate gyrus had the highest weights in the regression model.
Conclusions
As depressive severity increases, hippocampal subfield atrophy tends to spread from CA regions to surrounding areas, and primarily affects memory function in patients with youth depression. These results suggest hippocampus might be markers in progression of adolescent depression, offering new directions for early clinical intervention.