We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Depression is a significant mental health concern affecting the overall well-being of adolescents and young adults. Recently, the prevalence of depression has increased among young people. Nonetheless, there is little research delving into the longitudinal epidemiology of adolescent depression over time.
Aims
To investigate the longitudinal epidemiology of depression among adolescents and young adults aged 10–24 years.
Method
Our research focused on young people (aged 10–24 years) with depression, using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. We explored the age-standardised prevalence, incidence and disability-adjusted life-years (DALYs) of depression in different groups, including various regions, ages, genders and sociodemographic indices, from 1990 to 2019.
Results
The prevalence, incidence and DALYs of depression in young people increased globally between 1990 and 2019. Regionally, higher-income regions like High-Income North America and Australasia recorded rising age-standardised prevalence and incidence rates, whereas low- or middle-income regions mostly saw reductions. Nationally, countries such as Greenland, the USA and Palestine reported the highest age-standardised prevalence and incidence rates in 2019, whereas Qatar witnessed the largest growth over time. The burden disproportionately affected females across age groups and world regions. The most prominent age effect on incidence and prevalence rates was in those aged 20–24 years. The depression burden showed an unfavourable trend in younger cohorts born after 1980, with females reporting a higher cohort risk than males.
Conclusions
Between 1990 and 2019, the general pattern of depression among adolescents varied according to age, gender, time period and generational cohort, across regions and nations.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
A walking robot consisting of double Stewarts parallel legs was designed by our research team in the past time, which was mainly used for the transportation of the wounded after the disaster. In order to promote stability of control locomotion and ensure invariably horizontal state of the robot platform in the process of motion, the central pattern generator (CPG) based on particle swarm optimization (PSO) is presented to optimize the kinematic model. The purpose of optimization is to solve the hysteresis problem of displacement variation among the electric cylinders. Moreover, the dynamic model of the robot is established, which can provide mechanical basis for the feedback of control signal and make the robot move stably. The simulation results show that the displacement hysteresis problem of the electric cylinders is solved well. Meanwhile, compared with simulation results based on GA-CPG method, it is demonstrated that the robot motion planned using PSO-CPG method has better motion stability and can avoid the impact of legs landing during the transition phase of the motion cycle. The experimental results show that the platform on the robot can maintain an invariably horizontal state, and the locomotion is more stable. It verifies the feasibility of PSO-CPG model and the correctness of the dynamic model of the parallel mobile rescue robot.
Childhood maltreatment has been suggested to have an adverse impact on neurodevelopment, including microstructural brain abnormalities. Existing neuroimaging findings remain inconsistent and heterogeneous. We aim to explore the most prominent and robust cortical thickness (CTh) and gray matter volume (GMV) alterations associated with childhood maltreatment. A systematic search on relevant studies was conducted through September 2022. The whole-brain coordinate-based meta-analysis (CBMA) on CTh and GMV studies were conducted using the seed-based d mapping (SDM) software. Meta-regression analysis was subsequently applied to investigate potential associations between clinical variables and structural changes. A total of 45 studies were eligible for inclusion, including 11 datasets on CTh and 39 datasets on GMV, consisting of 2550 participants exposed to childhood maltreatment and 3739 unexposed comparison subjects. Individuals with childhood maltreatment exhibited overlapped deficits in the median cingulate/paracingulate gyri simultaneously revealed by both CTh and GM studies. Regional cortical thinning in the right anterior cingulate/paracingulate gyri and the left middle frontal gyrus, as well as GMV reductions in the left supplementary motor area (SMA) was also identified. No greater regions were found for either CTh or GMV. In addition, several neural morphology changes were associated with the average age of the maltreated individuals. The median cingulate/paracingulate gyri morphology might serve as the most robust neuroimaging feature of childhood maltreatment. The effects of early-life trauma on the human brain predominantly involved in cognitive functions, socio-affective functioning and stress regulation. This current meta-analysis enhanced the understanding of neuropathological changes induced by childhood maltreatment.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
The aim of this study was to assess the current status of disease-related knowledge and to analyze the relationship among the general condition, illness perception, and psychological status of patients with coronavirus disease 2019 (COVID-19).
Methods:
A hospital-based cross-sectional study was conducted on 118 patients using convenience sampling. The general questionnaire, disease-related knowledge questionnaire of COVID-19, Illness Perception Questionnaire (IPQ), and Profile of Mood States (POMS) were used to measure the current status of participants.
Results:
The overall average score of the disease-related knowledge of patients with COVID-19 was (79.19 ± 14.25), the self-care situation was positively correlated with knowledge of prevention and control (r = 0.265; P = 0.004) and total score of disease-related knowledge (r = 0.206; P = 0.025); the degree of anxiety was negatively correlated with the knowledge of diagnosis and treatment (r = −0.182; P = 0.049). The score of disease-related knowledge was negatively correlated with negative cognition (volatility, consequences, emotional statements) and negative emotions (tension, fatigue, depression) (P < 0.05); positively correlated with positive cognition (disease coherence) and positive emotion (self-esteem) (P < 0.05).
Conclusions:
It was recommended that we should pay more attention to the elderly and low-income groups, and increase the knowledge about diagnosis and treatment of COVID-19 and self-care in the future health education for patients.
Aggressive behaviour is common in animals and typically has lifetime consequences. As younger males have higher residual reproductive value than older males and lose more from injuries than older males do, the propensity for fighting tends to increase with age in many empirical reports and species. However, fighting patterns in those empirical reports cannot confirm the hypothesis that individuals cannot readily inflict injuries on their opponents. To address this shortcoming, a parasitoid wasp species, Anastatus disparis (Hymenoptera: Eupelmidae), was used as an experimental model to explore the characteristics of aggression from a life-history perspective; this wasp exhibits extreme fighting, resulting in contestants experiencing injury and death. Results showed that the energetic costs of fighting to injury significantly shortened life and caused the loss of most mating ability. Inconsistent with general predictions, the frequency and intensity of fighting in A. disparis significantly decreased with male age. Further study results showed significantly more young males were received by and successfully mated with virgin females, and most genes related to energy metabolism were downregulated in aged males. Our study provided supporting evidence that young A. disparis males show more aggression likely because of their resource holding potential and sexual attractiveness decline with age.
Information systems (IS) have facilitated workflow in the health care system for years. However, the utilization of IS in disaster medical assistance teams (DMATs) has been less studied.
Aim:
In Taiwan, we started a program in 2008 to build up an information system, MEDical Assistance and Information Dashboard (MED-AID), to improve the capability and increase the efficiency of our national DMAT.
Method: The mission of our national DMAT was to provide acute trauma care and subacute outpatient care in the field after an emergency event (e.g., earthquakes). We built the IS through a user-oriented process to fit the need of the DMAT. We first analyzed the response work in the DMAT missions and reviewed the current paperwork. We evaluated the eligibility and effectiveness of the core functions of DMATs by experts in Taiwan and then developed the IS. The IS was then tested and revised each year in two table-top exercises and one regional full-scale exercise by the DMAT staffs who came from different hospitals in Taiwan.
Results:
During the past 10 years, we identified several core concepts of IS of DMAT: patient tracking, medical record, continuity of care, integration of referral resources, disease surveillance, patient information reporting, and medical resources management. The application of the IS facilitate the DMAT in providing safe patient care with continuous recording and integrate patient referral resources based on geographic information. The IS also help the planning in real-time disease surveillance and logistic function in the medical resources monitoring.
Discussion:
Information systems could facilitate patient care and relieve the workload on information analysis and resources management for DMATs.
The Megamaser Cosmology Project (MCP) measures the Hubble Constant by determining geometric distances to circumnuclear 22 GHz H2O megamasers in galaxies at low redshift (z < 0.05) but well into the Hubble flow. In combination with the recent, exquisite observations of the Cosmic Microwave Background by WMAP and Planck, these measurements provide a direct test of the standard cosmological model and constrain the equation of state of dark energy. The MCP is a multi-year project that has recently completed observations and is currently working on final analysis. Based on distance measurements to the first four published megamasers in the sample, the MCP currently determines H0 = 69.3 ± 4.2 km s−1 Mpc−1. The project is finalizing analysis for five additional galaxies. When complete, we expect to achieve a ~4% measurement. Given the tension between the Planck prediction of H0 in the context of the standard cosmological model and astrophysical measurements based on standard candles, the MCP provides a critical and independent geometric measurement that does not rely on external calibrations or a distance ladder.
A novel scheme for power-combined frequency tripler adopting 2N diodes is proposed in this work. Even mode coupled suspended substrate stripline is used to divide and recombine the input and output power. The circuits of the tripler are printed on both sides of the substrate, with N diodes on the front side and the other N diodes on the back side. The front diodes and back diodes are in anti-parallel connection, and DC biased separately to increase the bandwidth and power capacity. Three Q-band prototypes with two, four, and six diodes are fabricated and tested. The output compression powers at output frequency of 43.5 GHz for two/four/six-diode tripler are 9.2, 11, and 12 dBm, respectively. Power capacity is improved with the proposed tripler. Optimum DC bias is also discussed in this work, and it is found that it first increases with drive power, and then drops when large drive power applied because of the increased series resistance of the diode due to high junction temperature.
Fossil isopod crustaceans in the suborder Phreatoicidea have a known stratigraphic range from the Carboniferous to the Jurassic. Until now, all Mesozoic records of this group were thought to occur in fresh water habitats. A new phreatoicidean isopod fossil of the Triassic Luoping marine fauna, Yunnan Province, China, is described. The new species, based on several exceptionally complete specimens, is assigned to the genus Protamphisopus Nicholls and the family Amphisopidae Nicholls. This Chinese record is the first report of a Mesozoic-age phreatoicidean isopod outside of Gondwanan terranes, requiring a revision of known biogeographic patterns of the Phreatoicidea. Whether this record is from a marine habitat or is the result of a secondary deposition is not certain. Sottyella Racheboef, Schram and Vidal from the Carboniferous (Stephanian) Lagerstätte of Montceaules-Mines that was assigned to this suborder may be a decapod. Therefore, it has no relationship to this new species.
The family Mixosauridae Baur, 1887 is a dominant group of Middle Triassic ichthyosaurs. Its generic composition has been controversial, but recent findings from southern China enabled Jiang et al. (2006) to recognize two monophyletic taxa within the clade, suggesting the presence of two genera within the family, namely Mixosaurus Baur, 1887 and Phalarodon Merriam, 1910. The latter genus, which was invalidated at one point (Nicholls et al., 1999; McGowan and Motani, 2003), was recently resurrected by Schmitz (2005) by validating its type species. Mixosaurus is Tethyan in distribution, whereas Phalarodon had been known mostly from North America and Spitsbergen, apart from a possible juvenile from Switzerland (Brinkmann, 1997, 1998). More recently, Jiang et al. (2003) reported a largely complete, yet poorly preserved skeleton as the first record of the genus Phalarodon from Asia and referred it to Phalarodon sp. However, important synapomorphies were not clearly identified, and evidence has since emerged that the specimen had been tampered with by farmers after it was collected. In the light of the cladistic analysis by Jiang et al. (2006), the referral of the specimen to the genus Phalarodon is questionable.
We report on a method based on cross-sectional scanning photoelectron microscopy and spectroscopy (XSPEM/S) for studying electronic structure of III-nitride surfaces and interfaces on a submicrometer scale. Cross-sectional III-nitride surfaces prepared by in situ cleavage were investigated to eliminate the polarization effects associated with the interface charges/dipoles normal to the cleaved surface. In contrast to the as-grown polar surfaces which show strong surface band bending, the cleaved nonpolar surfaces have been found to be under the flat-band conditions. Therefore, both doping and compositional junctions can be directly visualized at the cleaved nonpolar surfaces. Additionally, we show that the “intrinsic” valence band offsets at the cleaved III-nitride heterojunctions can be unambiguously determined.
ZnO films were grown on (0001) sapphire substrates by atomic layer deposition (ALD) using diethylzinc (DeZn) and nitrous oxide (N2O) in an inductively heated reactor operated at atmospheric pressure. Low-temperature (LT) ZnO buffer layers having various thicknesses were deposited at 400¢J followed by subsequent growth of ZnO films at 600¢J. Some of the ZnO films were then post-annealed at 1000¢J in the N2O flow. Under certain growth conditions, ZnO nanowires were formed on the post-annealed ZnO samples. Room temperature (RT) photoluminescence (PL) spectra of the ZnO nanowires show strong ultraviolet (UV) near band edge emissions at 3.27 eV with a typical full width at half-maximum ( FWHM ) of ~130 meV and quenched defect luminescence at 2.8 eV. 10 K PL spectra of the post-annealed ZnO all exhibit sharp excitonic emissions with the dominant emission being located at 3.36 eV having a FWHM of 4.6 meV.
Nanoscaled Cr2O3 powder with an average particle size of 20–40 nm, coated on alumina particles, has been produced by means of chemical vapor deposition (CVD) in a fluidized chamber, using the pyrolysis of Cr(CO)6 precursor. Amorphous and crystalline Cr2O3 particles were obtained when the temperatures of the pyrolysis were 300 and 400 °C, respectively. To prepare nanoscaled Cr3C2 powder from the nanometer-sized Cr2O3, carbonizing behavior of the Cr2O3 particles was investigated. It was found that, when amorphous Cr2O3 powders were carbonized in graphite furnace at 1150 °C for 2 h in vacuum (10−3 Torr), the powder was transformed into Cr3C2, while the crystalline Cr2O3 was transformed into a mixture of Cr7C3 and Cr3C2. The examinations by x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy confirmed the transformation of the nano-sized Cr3C2 powders. The results of thermogravimetry and differential thermal analysis indicated that the transformation temperature was ∼1089 °C for amorphous Cr2O3 and ∼1128 °C for crystalline Cr2O3.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.