We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Direct numerical simulations are performed to explore the impact of surface roughness on inter-scale energy transfer and interaction in a turbulent open-channel flow over differently arranged rough walls. With friction Reynolds number approximately 540, six distinct configurations of roughness arrangements are examined. The results show that the clustered roughness arrangements yield notable changes in large-scale secondary-flow structures, which manifest in the profiles of dispersive stresses, predominantly near the roughness elements. They are marked by the presence of spanwise alternating high-momentum pathways and low-momentum pathways. From the outer peak in the spanwise energy spectra, the size and intensity of turbulent secondary flows are shown to be related to the spanwise spacing of the roughness heterogeneity. The emergence of turbulent secondary flows serves to suppress the original large-scale structures in the outer region of smooth-wall turbulence, paving the way for the development of new turbulent structures at the second harmonic scale. Furthermore, the spanwise triadic interaction analysis reveals the mutual energy exchange between the secondary harmonic scale and the secondary-flow scale. These findings elucidate the underlying mechanisms behind the attenuation of large-scale structures in the outer region influenced by roughness, offering new insights into the dynamic interplay of scale interactions in rough-wall turbulence.
We investigate the dynamics of circular self-propelled particles in channel flow, modelled as squirmers using a two-dimensional lattice Boltzmann method. The simulations explore a wide range of parameters, including channel Reynolds numbers ($\textit{Re}_c$), squirmer Reynolds numbers ($\textit{Re}_s$) and squirmer-type factors ($\beta$). For a single squirmer, four motion regimes are identified: oscillatory motion confined to one side of the channel, oscillatory crossing of the channel centreline, stabilisation at a lateral equilibrium position with the squirmer tilted and stable upstream swimming near the channel centreline. For two squirmers, interactions produce not only these four corresponding regimes but also three additional ones: continuous collisions with repeated position exchanges, progressive separation and drifting apart and, most notably, the formation of a stable wedge-like conformation (regime D). A key finding is the emergence of regime D, which predominantly occurs for weak pullers ($\beta = 1$) and at moderate to high $\textit{Re}_c$ values. Hydrodynamic interactions align the squirmers with streamline bifurcations near the channel centreline, enabling stability despite transient oscillations. Additionally, the channel blockage ratio critically affects the range of $\textit{Re}_s$ values over which this regime occurs, highlighting the influence of geometric confinement. This study extends the understanding of squirmer dynamics, revealing how hydrodynamic interactions drive collective behaviours. The findings also offer insights into the design of self-propelled particles for biomedical applications and contribute to the theoretical framework for active matter systems. Future work will investigate three-dimensional effects and the stability conditions for spherical squirmers forming stable wedge-like conformations, further generalising these results.
Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) is a key lepidopteran pest affecting maize production across Asia. While its general biology has been well studied, the phenomenon of pupal ring formation remains poorly understood. This study examined the factors influencing pupal ring formation under controlled laboratory conditions. Results showed that pupal rings were formed exclusively when larvae were reared on an artificial diet, with no ring formation observed on corn-stalks. Females exhibited a significantly higher tendency to participate in ring formation than males. Additionally, male participation increased proportionally with the number of rings formed, a pattern not observed in females. The size of the rearing arena significantly influenced ring formation, with smaller arenas (6 cm diameter) promoting more frequent pairing, particularly among females. Temperature also played a significant role: lower participation rates were recorded at 22 °C compared to 25 °C and 28 °C, although the number of rings formed did not differ significantly across temperatures. Developmental stage and sex composition further influenced pairing behaviour; pupal rings formed only among individuals of similar maturity, and male participation was significantly reduced in all-male groups compared to mixed-sex groups. These findings suggest that pupal ring formation in O. furnacalis is modulated by dietary substrate, larval sex, environmental conditions, and developmental synchrony, offering new insights into the behavioural ecology of this pest.
Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae), is a major pest in corn production, and its management remains a significant challenge. Current control methods, which rely heavily on synthetic chemical pesticides, are environmentally detrimental and unsustainable, necessitating the development of eco-friendly alternatives. This study investigates the potential of the entomopathogenic nematode Steinernema carpocapsae as a biological control agent for O. furnacalis pupae, focusing on its infection efficacy and the factors influencing its performance. We conducted a series of laboratory experiments to evaluate the effects of distance, pupal developmental stage, soil depth, and light conditions on nematode attraction, pupal mortality and sublethal impacts on pupal longevity and oviposition. Results demonstrated that S. carpocapsae exhibited the highest attraction to pupae at a 3 cm distance, with infection declining significantly at greater distances. Younger pupae (<12 h old), were more attractive to nematodes than older pupae, and female pupae were preferred over males. Nematode infection was highest on the head and thorax of pupae, with a significant reduction in infection observed after 24 h. Infection caused 100% mortality in pupae within 2 cm soil depth, though efficacy was reduced under light conditions. Sublethal effects included a significant reduction in the longevity of infected adults and a decrease in the number of eggs laid by infected females compared to controls. These findings underscore the potential of S. carpocapsae as an effective biocontrol agent for sustainable pest management in corn production, offering a viable alternative to chemical pesticides.
The desert locust (Schistocerca gregaria) is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 108 km2) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090 (2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be 0.0606 × 108 and 0.0891 × 108 km2, respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
The immediate priorities for high-power delivery employing solid-core fibers are balancing the nonlinear effect and beam deterioration. Here, the scheme of tapered multimode fiber is experimentally realized. The tapered multimode fiber, featuring a 15 m (24/200 μm)–10 m (tapered region)–80 m (48/400 μm) profile, guides the laser with a weakly coupled condition. With the input power of 1035 W, the maximum output power over the 105 m delivery is 962 W, corresponding to a high efficiency of over 93% and a nonlinear suppression ratio of over 50 dB. Mode resolving results show high-order-mode contents of less than –30 dB in the whole delivery path, resulting in a high-fidelity delivery with M2 factors of 1.20 and 1.23 for the input and output lasers, respectively. Furthermore, the ultimate limits of delivery lengths for solid-core weakly coupled fibers are discussed. This work provides a valuable reference to reconsider the future boom of high-power laser delivery based on solid-core fibers.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Early-season rice often faces limited market competition due to its lower quality, which diminishes farmers' incentives to cultivate it. Developing specific early-season rice varieties tailored for rice noodle production represents a practical solution to this challenge. However, limited information exists on the varietal differences regarding the yield and quality of noodles produced from early-season rice and their determinants. To address this gap, this study conducted field experiments with 15 early-season rice varieties during 2022 and 2023. The results revealed significant varietal differences in rice noodle yield per unit of land area and cooking and eating (texture) qualities of the noodles, with the variety Zhuliangyou 4024 standing out for its ability to produce rice noodles that are both high yielding and of superior cooking and eating qualities. Correlation analysis showed the yield of rice noodles per unit of land area was significantly related to grain yield per unit of land, which in turn was linked to grain weight. Additionally, the analysis showed the cooking loss rate of rice noodles and their chewiness were significantly correlated with both amylose and amylopectin content, whereas the hardness, springiness, and resilience of cooked rice noodles were significantly correlated only with amylose content. However, partial correlation analysis indicated that all these quality traits were significantly correlated solely with amylose content when controlling the influence of other chemical properties. These findings indicate that selecting early-season rice varieties with high grain weight and high amylose content can lead to the production of high-yield and high-quality rice noodles.
To evaluate the variations in COVID-19 case fatality rates (CFRs) across different regions and waves, and the impact of public health interventions, social and economic characteristics, and demographic factors on COVID-19 CFRs, we collected data from 30 countries with the highest incidence rate in three waves. We summarized the CFRs of different countries and continents in each wave through meta-analysis. Spearman’s correlation and multiple linear regression were employed to estimate the correlation between influencing factors and reduction rates of CFRs. Significant differences in CFRs were observed among different regions during the three waves (P < 0.001). An association was found between the changes in fully vaccinated rates (rs = 0.41), population density (rs = 0.43), the proportion of individuals over 65 years old (rs = 0.43), and the reduction rates of case fatality rate. Compared to Wave 1, the reduction rates in Wave 2 were associated with population density (β = 0.19, 95%CI: 0.05–0.33) and smoking rates (β = −4.66, 95%CI: −8.98 – −0.33), while in Wave 3 it was associated with booster vaccine rates (β = 0.60, 95%CI: 0.11–1.09) and hospital beds per thousand people (β = 4.15, 95%CI: 1.41–6.89). These findings suggest that the COVID-19 CFRs varied across different countries and waves, and promoting booster vaccinations, increasing hospital bed capacity, and implementing tobacco control measures can help reduce CFRs.
Suppressing mode degradation is the key issue for high-power laser delivery; however, diagnosing mode degradation in its entirety, ranging from the contents and origins to locations, has always been a major obstacle. Here, a versatile approach for tracing the origins of mode coupling is demonstrated through addressing the differential intermodal dispersions of fiber modes. Full recognition for modal contents and the origins of mode degradation are experimentally completed in a two-mode fiber laser delivery system, which assists a significant improvement of beam quality M2 from 1.35 to 1.15 at the highest power of over 300 W. This method yields a quantitative characterization for manipulating the individual mode of dual-mode coupling origins or their combinations. This work points toward a promising strategy for the online tracing of mode coupling in cascade fiber links, thus enabling further pursuit of seeking extreme beam quality in high-power fiber laser systems.
The influence of outer large-scale motions (LSMs) on near-wall structures in compressible turbulent channel flows is investigated. To separate the compressibility effects, velocity fluctuations are decomposed into solenoidal and dilatational components using the Helmholtz decomposition method. Solenoidal velocity fluctuations manifest as near-wall streaks and outer large-scale structures. The spanwise drifting of near-wall solenoidal streaks is found to be driven by the outer LSMs, while LSMs have a trivial influence on the spanwise density of solenoidal streaks, consistent with the outer LSM impacts found in incompressible flows (Zhou et al., J. Fluid Mech., vol. 940, 2022, p. A23). Dilatational motions are characterized by the near-wall small-scale travelling-wave packets and the large-scale parts in the outer region. The streamwise advection velocity of the near-wall structures remains at $16 \sim 18u_{\tau }$, hardly influenced by Mach numbers, Reynolds numbers and wall temperatures. The spanwise drifting of near-wall dilatational structures, quantified by the particle image velocimetry method, follows a mechanism distinct from solenoidal streaks. This drifting velocity is notably larger than those of the solenoidal streaks, and the influence of outer LSMs is not the primary trigger for this drifting.
The practical implementation of machine learning in flow control is limited due to its significant training expenses. In the present study the convolutional neural network (CNN) trained with the data of the restricted nonlinear (RNL) model is used to predict the normal velocity on a detection plane at $y^+=10$ in a turbulent channel flow, and the predicted velocity is used as wall blowing and suction for drag reduction. An active control test is carried out by using the well-trained CNN in direct numerical simulation (DNS). Substantial drag reduction rates up to 19 % and 16 % are obtained based on the spanwise and streamwise wall shear stresses, respectively. Furthermore, we explore the online control of wall turbulence by combining the RNL model with reinforcement learning (RL). The RL is constructed to determine the optimal wall blowing and suction based on its observation of the wall shear stresses without using the label data on the detection plane for training. The controlling and training processes are conducted synchronously in a RNL flow field. The control strategy discovered by RL has similar drag reduction rates with those obtained previously by the established method. Also, the training cost decreases by over thirty times at $Re_{\tau }=950$ compared with the DNS-RL model. The present results provide a perspective that combining the RNL model with machine learning control for drag reduction in wall turbulence can be effective and computationally economical. Also, this approach can be easily extended to flows at higher Reynolds numbers.
Understanding the yield attributes of rice crops grown at super high-yielding sites is useful for identifying how to achieve super high yield in rice. In this study, field experiments were conducted in 2021 and 2022 to compare grain yield and yield attributes of ten high-yielding hybrid rice varieties between Xingyi (a super high-yielding site) and Hengyang (a site with typical yields). Results showed that Xingyi produced an average grain yield of 13.4 t ha−1 in 2021 and 14.0 t ha−1 in 2022, which were, respectively, 20% and 44% higher than those at Hengyang. Higher panicles per m2 and higher grain weight were responsible for the higher grain yield at Xingyi compared to Hengyang. The higher values of panicles per m2 and grain weight at Xingyi compared to Hengyang were due to greater source capacity resulting from improved pre-heading biomass production. This study suggests that simultaneously increasing panicle number and grain weight through improving pre-heading biomass production is a potential way to achieve super high yield in rice.
In this study, we investigated the influence of fiber parameters on stimulated Raman scattering (SRS) and identified a unique pattern of SRS evolution in the counter tandem pumping configuration. Our findings revealed that the SRS threshold in counter-pumping is predominantly determined by the length of the output delivery fiber rather than the gain fiber. By employing the counter tandem pumping scheme and optimizing the fiber parameters, a 10 kW fiber laser was achieved with beam quality M2 of 1.92. No mode instability or severe SRS limitation was observed. To our knowledge, this study achieved the highest beam quality in over 10 kW fiber lasers based on conventional double-clad Yb-doped fiber.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
A common complication of bicanalicular intubation is dislocation of the silicone tube.
Methods
Eleven patients with prolapsed silicone tubes who had undergone bicanalicular nasal intubation were injected with a 2 per cent lidocaine solution to infiltrate the lacrimal duct mucosa. A memory wire probe was used to pull a 4-0 suture through the lacrimal passage retrogradely, allowing the suture to grab the silicone tube. Paraffin oil was applied to the contact part of the rope and the silicone tube, then the distal end of the silk thread was removed from the nostril until the tube was pulled into place.
Results
The prolapsed silicone tubes were restored by surgery in nine patients, with the drainage tube in the correct position in the eye and the lacrimal duct irrigation unobstructed.
Conclusion
The optimisations made in this study are considered effective adjustments of reduction surgery for a prolapsed silicone tube.
With the rapid development of cross-border e-commerce, consumers often face psychological anxiety disorders when making international shopping. However, there are still relatively few studies on the impact of cross-border e-commerce model innovation on consumer psychological anxiety disorder.
Subjects and Methods
100 cross-border e-commerce consumers were selected for the experiment, and the data were collected by questionnaire survey. The study sample included consumers from different regions and different age groups. Stanford Acute Stress Response Questionnaire (SASRQ) and 3-Minute Delirium Diagnosis Scale (3D-CAM) were used to assess the mental health status of the subjects, while SPSS23.0 was used for statistical analysis and regression analysis to analyze the impact of cross-border e-commerce model innovation on consumer psychological anxiety disorders.
Results
The results show that cross-border e-commerce model innovation has a significant impact on consumer psychological anxiety disorder. Innovative payment methods and logistics methods can reduce consumers’ sense of unease and reduce their psychological pressure during the shopping process. At the same time, innovative shopping experiences and customer service can provide consumers with a better experience and ease their psychological anxiety.
Conclusions
The innovation of a cross-border e-commerce model can effectively reduce the psychological anxiety disorder of consumers. In order to improve the shopping experience and satisfaction of consumers, cross-border e-commerce enterprises should focus on innovating payment methods, logistics methods, shopping experience and customer service. Personal characteristics also need to be considered in the model innovation of cross-border e-commerce to meet the needs of different consumer groups.
Direct numerical simulations (DNSs) are performed to investigate the roughness effects on the statistical properties and the large-scale coherent structures in the turbulent channel flow over three-dimensional sinusoidal rough walls. The outer-layer similarities of mean streamwise velocity and Reynolds stresses are examined by systematically varying the roughness Reynolds number $k^{+}$ and the ratio of the roughness height to the half-channel height $k / \delta$. The energy transfer mechanism of turbulent motions in the presence of roughness elements with different sizes is explored through spectral analysis of the transport equation of the two-point velocity correlation and the scale-energy path display of the generalized Kolmogorov equation. The results show that, with increasing $k^+$, the downward shift of the mean streamwise velocity profile in the logarithmic region increases and the peak intensities of turbulent Reynolds stresses decrease. At an intermediate Reynolds number ($Re_{\tau }= 1080$), the length scale and intensity of the large-scale coherent structures increase for a small roughness ($k^{+}=10$), which leads to failure of the outer-layer similarity in rough-wall turbulence, and decrease for a large roughness ($k^{+}=60$), as compared with the smooth-wall case. The existence of the small roughness ($k^{+}=10$) enhances the mechanism of inverse energy cascade from the inner-layer small-scale structures to the outer-layer large-scale structures. Correspondingly, the self-sustaining processes of the outer-layer large-scale coherent structures, including turbulent production, interscale transport, pressure transport and spatial turbulent transport, are all enhanced, whereas the large roughness ($k^{+}=60$) weakens the energy transfer between the inner and outer regions.