We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Knowledge is growing on the essential role of neural circuits involved in aberrant cognitive control and reward sensitivity for the onset and maintenance of binge eating.
Aims
To investigate how the brain's reward (bottom-up) and inhibition control (top-down) systems potentially and dynamically interact to contribute to subclinical binge eating.
Method
Functional magnetic resonance imaging data were acquired from 30 binge eaters and 29 controls while participants performed a food reward Go/NoGo task. Dynamic causal modelling with the parametric empirical Bayes framework, a novel brain connectivity technique, was used to examine between-group differences in the directional influence between reward and executive control regions. We explored the proximal risk factors for binge eating and its neural basis, and assessed the predictive ability of neural indices on future disordered eating and body weight.
Results
The binge eating group relative to controls displayed fewer reward-inhibition undirectional and directional synchronisations (i.e. medial orbitofrontal cortex [mOFC]–superior parietal gyrus [SPG] connectivity, mOFC → SPG excitatory connectivity) during food reward_nogo condition. Trait impulsivity is a key proximal factor that could weaken the mOFC–SPG connectivity and exacerbate binge eating. Crucially, this core mOFC–SPG connectivity successfully predicted binge eating frequency 6 months later.
Conclusions
These findings point to a particularly important role of the bottom-up interactions between cortical reward and frontoparietal control circuits in subclinical binge eating, which offers novel insights into the neural hierarchical mechanisms underlying problematic eating, and may have implications for the early identification of individuals suffering from strong binge eating-associated symptomatology in the general population.
To reveal the chain mediating roles of insomnia and anxiety between social support and PTSD in nursing staff under the stage of COVID-19 regular pandemic prevention and control in China.
Methods
A total of 784 nurses were recruited using the convenience sampling method in Jiangsu Province, China. Demographic questionnaire, Perceived Social Support Scale, Impact of Event Scale-Revised, Generalized Anxiety Disorder-7 and Insomnia Severity Index were applied to collect data.
Results
Social support, PTSD, insomnia and anxiety were significantly correlated with each other. Insomnia and anxiety acted as chain mediators between social support and PTSD.
Conclusion
Insufficient social support may trigger PTSD through the chain mediating effects of insomnia and anxiety in nursing staff under the stage of COVID-19 regular pandemic prevention and control. Measures focusing on social support, insomnia and anxiety should be taken to reduce or even prevent PTSD in nursing staff in Chinese hospitals in similar crises in the future.
Let $T=(V,E)$ be a tree in which each edge is assigned a cost; let $\mathcal{P}$ be a set of source–sink pairs of vertices in V in which each source–sink pair produces a profit. Given a lower bound K for the profit, the K-prize-collecting multicut problem in trees with submodular penalties is to determine a partial multicut $M\subseteq E$ such that the total profit of the disconnected pairs after removing M from T is at least K, and the total cost of edges in M plus the penalty of the set of still-connected pairs is minimized, where the penalty is determined by a nondecreasing submodular function. Based on the primal-dual scheme, we present a combinatorial polynomial-time algorithm by carefully increasing the penalty. In the theoretical analysis, we prove that the approximation factor of the proposed algorithm is $(\frac{8}{3}+\frac{4}{3}\kappa+\varepsilon)$, where $\kappa$ is the total curvature of the submodular function and $\varepsilon$ is any fixed positive number. Experiments reveal that the objective value of the solutions generated by the proposed algorithm is less than 130% compared with that of the optimal value in most cases.
This study closely replicates the analyses of the third research question in Römer and Berger (2019), which reported that the associations between verbs and verb argument constructions (VACs) used by German and Spanish learners of English move closer to a native usage norm as the learners’ proficiency increases. This study conducted the same correlation analyses from the original study but with a substantially expanded version of the learner corpus used therein. Additionally, we conducted zero-inflated negative binomial analyses to estimate the relationship between the frequencies of verb-VAC combinations in the British National Corpus (BNC) and in the learner subcorpora representing different proficiency levels. Our findings were consistent with the original study in showing significant positive correlations between frequencies of the verb-VAC combinations in the BNC and in the learner subcorpora but further revealed the potential effect of topic on the learners’ VAC usage. Implications for future studies are discussed.
Collisions are one of the major accidents in the shipping industry, causing significant losses. In this work, a framework of marine collision risk identification strategy was developed to quantitatively analyse collision risks and provide an easy and convenient way to monitor traffic flow in relevant waters to mitigate the chances of collision. The model was verified by using automatic identification system data obtained from Tianjin Port. When compared to previous research, the proposed model can identify risks earlier and give people more time to analyse and take action. The results indicate that it also can provide a visual display to alert relevant personnel. The model can be used as a reference to identify potential collision risks or as an information source for future research.
In order to decrease the influence of system parameters and load on the dynamic performance of permanent magnet synchronous motor (PMSM) in cooperative robot joint modules, a practical model-based robust control method was proposed. It inherits the traditional proportional-integral-derivative (PID) control and robust control based on error and model-based control. We first set up the nominal controller using the dynamics model. In order to limit the influence of uncertainty on dynamic performance, a robust controller is established based on Lyapunov method. The control can be regarded as an improved PID control or a redesigned robust control. Compared with the traditional control method, it is simple to implement and has practical effects. It is proved by theoretical analysis that the controller can guarantee the uniform boundedness and uniform final boundedness of the system. In addition, the prototype of fast controller cSPACE is built on the experiment platform, which averts long-time programming and debugging. It offers immense convenience for practical operation. Finally, numerical simulation and real-time experiment results are presented. Based on cSPACE and a PMSM in the joint module of a practical cooperative robot, the availability of the control design and the achievable control performance are verified.
We asked how repeated media reports on technological hazards influence an individual’s risk perception. We looked for two contradictory effects, an increasing effect of repetition on perceived risk with the first few repetitions and a decreasing effect with later repetitions, leading to the inverted U-shaped pattern. In an experiment, we demonstrated the inverted U-shaped relationship between the repetition and perceived risk in the context of food risk. The finding broadens the range of mere-exposure effects and indicates that exposure to risk information can be a double-edged sword, which brings either an increasing or a decreasing perceived risk.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
Since the photocatalytic effect of a single conventional photocatalyst is often not ideal, it is particularly important to design and construct an efficient and stable photocatalyst in a compound way. In this study, we exploited the sol–gel method to combine BiOCl and TiO2 and gave full play to their respective advantages to prepare BiOCl/TiO2 composite materials. Then, X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) characterization techniques were utilized to study important indicators of composites—composition, morphology, and structure. In the photodegradation experiment of methyl orange (MO), it was found that the photocatalytic performance of 10BTO (the molar ratio of TiO2 to BiOCl is 10:1) was the best among all the composite photocatalysts, and almost complete degradation of MO was realized. Besides, repeated experiments and recyclability tests on composite materials display favorable stability. Through ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL), transient photocurrent response, electrochemical impedance spectroscopy (EIS), and electron spin resonance (ESR), a possible degradation mechanism is proposed. Given that there are serious environmental pollution problems in our country, we sincerely hope this research will do its best to degrade organic pollutants in wastewater.
Light-absorbing impurities (LAIs, e.g. black carbon (BC), organic carbon (OC), mineral dust (MD)) deposited on snow cover reduce albedo and accelerate its melting. Northern Xinjiang (NX) is an arid and semi-arid inland region, where snowmelt leads to frequent floods that have been a serious threat to local ecological security. There is still a lack of quantitative assessments of the effects of LAIs on snowmelt in the region. This study investigates spatial variations of LAIs in snow and its effect on snow albedo, radiative forcing (RF) and snowmelt across NX. Results showed that concentrations of BC, OC (only water-insoluble OC), MD ranged from 32 to 8841 ng g−1, 77 to 8568 ng g−1 and 0.46 to 236 µg g−1, respectively. Weather Research and Forecasting Chemistry model suggested that residential emission was the largest source of BC. Snow, Ice, and Aerosol Radiative modelling showed that the average contribution of BC and MD to snow albedo reduction was 17 and 3%, respectively. RF caused by BC significantly exceeded RF caused by MD. In different scenarios, changes in snow cover duration (SCD) caused by BC and MD decreased by 1.36 ± 0.61 to 6.12 ± 3.38 d. Compared with MD, BC was the main dominant factor in reducing snow albedo and SCD across NX.
In this study, TiO2 photoanodes doped with samarium ions via a method of hydrothermal treatment were used to fabricate dye-sensitized solar cells (DSSCs). Different doping concentrations were investigated on the effects of the cell’s performance. Some techniques including XRD, scanning electron microscopy, HRTEM, XPS, UV-Vis, photoluminescence were used to characterize the morphology, structure, and optic properties of the prepared photoanodes. The photovoltaic performance of the fabricated cells was further evaluated by measuring the current density–voltage (J–V) curves. It was found that: (1) The down-conversion luminescence effect derived from samarium doping could enhance the light-harvesting ability. (2) Compared with the undoped sample, the samarium-doped cells exhibited enhanced photovoltaic performance. Among the cells with different doping concentrations, the cell TiO2:0.015 Sm showed the best power conversion efficiency of 6.08% with a high open-circuit voltage (Voc) and a short-circuit current density (Jsc).
In this article, a comprehensive investigation on the thermal properties of Yb3Al5O12 is conducted, including Debye temperature, thermal expansion coefficient (TEC), thermal diffusivity, heat capacity, and thermal conductivity. The calculated Debye temperature of Yb3Al5O12 from the measured elastic properties is 625 K. The linear and volumetric thermal expansions of Yb3Al5O12 from 298 to 1273 K are (7.83 ± 0.14) × 10−6 and (23.74 ± 0.42) × 10−6 K−1, respectively. The linear TEC of the polycrystalline bulk Yb3Al5O12 determined by dilatometer is (8.22 ± 0.3) × 10−6 K−1. The measured thermal conductivities of Yb3Al5O12 are 4.67 and 2.05 W (m K)−1, respectively, at 300 and 1400 K. The estimated minimum thermal conductivity, κmin, is 1.22 W (m K)−1. The high temperature thermal conductivity is close to the evaluated κmin, which is lower than most commonly used thermal barrier coating (TBC) material such as Y2O3-stabilized-ZrO2 (YSZ). The unique combination of these properties renders Yb3Al5O12 being a very promising candidate material for TBC.
Amphidiploids serve as a bridge for transferring genes from wild species into wheat. In this study, five amphidiploids with AABBUU and AABBNN genomes were produced by spontaneous chromosome doubling of unreduced triploid F1 gametes from crosses between diploid Aegilops (A. umbellulata accessions CIae 29 and PI 226500, and A. uniaristata accession PI 554419) and tetraploid Triticum turgidum (ssp. durum cultivar Langdon and ssp. dicoccum accessions PI 94 668 and PI 349045) species. The composition of high-molecular-weight glutenin subunits (HMW-GS) in these amphidiploids and in their parental A. umbellulata and A. uniaristata species was analysed. As expected, the amphidiploids from T. turgidum ssp. dicoccum accession PI 944668 or PI 349045 and A. umbellulata accession CIae 29 or PI 226500 and A. uniaristata accession PI 554419 showed the same HMW-GS patterns as those of their Aegilops parents, because HMW-GS genes were all silenced in the T. turgidum ssp. dicoccum parents. The amphidiploids from CIae 29 and Langdon inherited all of the HMW-GS genes from their parents except for the Uy type. Using 10 and 15% sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) and 10% urea/SDS–PAGE, 11 Ux and ten Uy types in 16 combinations were observed in 48 A. umbellulata accessions, and two Nx and two Ny types in two combinations were detected in six A. uniaristata accessions. These novel HMW-GS variants may provide new genetic resources for improving the quality of wheat.
Philosophers debate over the truth of the Doctrine of Doing and Allowing, the thesis that there is a morally significant difference between doing harm and merely allowing harm to happen. Deontologists tend to accept this doctrine, whereas consequentialists tend to reject it. A robust defence of this doctrine would require a conceptual distinction between doing and allowing that both matches our ordinary use of the concepts in a wide range of cases and enables a justification for the alleged moral difference. In this article, I argue not only that a robust defence of this doctrine is available, but also that it is available within a consequentialist framework.
Tetra(4-dihydroxyborylphenyl)germanium as the tetrahedral units and 1,2,4,5-tetrahydroxybenzene as linkers were selected to form a crystalline porous aromatic framework, CPAF-13, with the planar five-membered BO2C2 ring in its structure by a dehydration reaction. The crystallinity of CPAF-13 was confirmed by x-ray diffraction analysis. The Ar sorption measurement on activated CPAF-13 results in a surface area of 417 m2/g, using Brunauer Emmett Teller model. CPAF-13 also shows a considerable adsorption capacity of H2.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.