We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With numerous applications of coilable masts in high-precision space application scenarios, there are also greater demands on the accuracy of their dynamic modelling and analysis. The modelling of hinges is a critical issue in the dynamic modelling of coilable masts, which significantly affects the accuracy of the dynamic response analysis. For coilable masts, the rotational effect is the most important problem in hinge modelling. However, few studies have focused on this topic. To address this problem, the concept of hinge equivalent rotational stiffness is proposed in this paper to describe the rotational effect of the coilable mast hinges. After that, a new coilable mast dynamic model containing the undetermined hinge equivalent rotational stiffness is introduced, and an identification method for the hinge equivalent rotational stiffness based on the hammer test is proposed. Finally, the dynamic modelling method is validated through an actual coilable mast example, and the analysis and test results show that the accuracy of the dynamic model established by the proposed method in this paper is greater than that of the traditional model.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
A key step toward understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organisation at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organisation of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex.
Aims
We aimed to evaluate the impact of sex on the spatial organisation of person-specific functional brain networks.
Method
We leveraged person-specific atlases of functional brain networks, defined using non-negative matrix factorisation, in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalised additive models to uncover associations between sex and the spatial layout (topography) of personalised functional networks (PFNs). We also trained support vector machines to classify participants’ sex from multivariate patterns of PFN topography.
Results
Sex differences in PFN topography were greatest in association networks including the frontoparietal, ventral attention and default mode networks. Machine learning models trained on participants’ PFNs were able to classify participant sex with high accuracy.
Conclusions
Sex differences in PFN topography are robust, and replicate across large-scale samples of youth. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Ultra-processed plant-based foods, such as plant-based burgers, have gained in popularity. Particularly in the out-of-home (OOH) environment, evidence regarding their nutritional profile and environmental sustainability is still evolving. Plant-based burgers available at selected OOH sites were randomly sampled in Amsterdam, Copenhagen, Lisbon and London. Plant-based burgers (patty, bread and condiment) (n 41) were lab analysed for their energy, macronutrients, amino acids and minerals content per 100 g and serving and were compared with reference values. For the plant-based burgers, the median values per 100 g were 234 kcal, 20·8 g carbohydrates, 3·5 g dietary fibre and 12·0 g fat, including 0·08 g TFS and 2·2 g SFA. Protein content was 8·9 g/100 g, with low protein quality according to amino acid composition. Median Na content was 389 mg/100 g, equivalent to 1 g salt. Compared with references, the median serving provided 31% of energy intake based on a 2000 kcal per day and contributed to carbohydrates (17–28%), dietary fibre (42%), protein (40%), total fat (48%), SFA (26%) and Na (54%). One serving provided 15–23% of the reference values for Ca, K and Mg, while higher contributions were found for Zn, Mn, P and Fe (30–67%). The ultra-processed plant-based burgers provide protein, dietary fibre and essential minerals and contain relatively high levels of energy, Na and total fats. The amino acid composition indicated low protein quality. The multifaceted nutritional profile of plant-based burgers highlights the need for manufacturers to implement improvements to better support healthy dietary habits, including reducing energy, Na and total fats.
In a recent survey of nematodes associated with tobacco in Shandong, China, the root-lesion nematode Pratylenchus coffeae was identified using a combination of morphology and molecular techniques. This nematode species is a serious parasite that damages a variety of plant species. The model plant benthi, Nicotiana benthamiana, is frequently used to study plant-disease interactions. However, it is not known whether this plant species is a host of P. coffeae. The objectives of this study were to evaluate the parasitism and pathogenicity of five populations of the root-lesion nematode P. coffeae on N. benthamiana.N. benthamiana seedlings with the same growth status were chosen and inoculated with 1,000 nematodes per pot. At 60 days after inoculation, the reproductive factors (Rf = final population densities (Pf)/initial population densities (Pi)) for P. coffeae in the rhizosphere of N. benthamiana were all more than 1, suggesting that N. benthamiana was a good host plant for P. coffeae.Nicotiana. benthamiana infected by P. coffeae showed weak growth, decreased tillering, high root reduction, and noticeable brown spots on the roots. Thus, we determined that the model plant N. benthamiana can be used to study plant-P. coffeae interactions.
While the role of benzodiazepines (BZDs) has been well established for anxiety and related disorders, there are significant concerns about BZD dependence, withdrawal, and tolerance. There is a lot of ambiguity regarding the potential long-term effects of BZDs on mental health. However, the risk of developing subsequent other substance use disorders is in question.
Objectives
In this electronic medical record (EMR) based retrospective cohort study, the study cohort was defined as patients between the ages of 18 and 65 with anxiety disorders (ICD-10-CM: F40-F48) prescribed with at least one BZD; the control cohort was defined as patients between the ages of 18 and 65 with anxiety disorders (ICD-10-CM: F40-F48) with no BZD prescription during the five-year timeframe examined. We excluded patients with pre-existing substance use disorders (ICD-10-CM: F10-F19), et al.
Methods
We collected data from TriNetX Research database, a real-time international EMR network, from September 2017 to September 2022. Patients in the two cohorts were matched by gender, age, race, ethnicity, and common medical conditions at a 1:1 ratio by propensity scoring and then underwent Kaplan–Meier analysis and association analysis.
Results
A total of 626,754 patients were identified and matched for analysis. Patients in the study cohort were more likely to be female (67.6% vs. 66.7%, p < 0.001), non-Hispanic (65.8% vs. 62.5%, p < 0.001) and white (72.8% vs. 69.1%, p < 0.001). Kaplan–Meier analysis showed the survival probability at the end of the time window was 94.1% for the control cohort and 89.5% for the study cohort (Hazard ratio, 2.20; 95% CI, 2.16-2.25; P < 0.001) in all type of substance use disorders. (Table 1)Table 1.
Hazard ratio of substance use disorders difference in BZD cohort versus the control cohort.
Substance use disorders was defined as Mental and behavioral disorders due to psychoactive substance use (ICD-10-CM: F10-F19).
Conclusions
Patients with an anxiety disorder who were prescribed BZDs are at higher risk of not only BZD dependence but all types of substance use disorders than a matched cohort not prescribed BZDs. Given this notable association, clinicians should be cautious while prescribing BZDs and inform the patient about the risks associated with their utilization.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
This study aimed to investigate the association of nasal nitric oxide and olfactory function.
Method
A cross-sectional study was performed in 117 adults, including 91 patients with chronic rhinosinusitis and 26 healthy controls. Scores on the 22-item Sino-Nasal Outcomes Test, Lund-Mackay scale and Lund-Kennedy scale were recorded to assess severity of disease. All participants were screened for common inhaled and food allergens. Nasal nitric oxide and fractional exhaled nitric oxide testing, acoustic rhinometry and anterior rhinomanometry testing were performed to measure nasal function. The validated Sniffin’ Sticks test battery was used to assess olfactory function.
Results
Higher nasal nitric oxide was an independent protective factor for odour discrimination and odour threshold in participants with chronic rhinosinusitis after adjusting for age, gender, drinking, smoking, 22-item Sino-Nasal Outcomes Test, Lund-Mackay score, Lund-Kennedy score, immunoglobulin E and the second minimal cross-sectional area by acoustic rhinometry. Nasal nitric oxide also showed high discrimination in predicting impaired odour discrimination. In addition, nasal nitric oxide was lower in older participants, those with higher Lund-Mackay or Lund-Kennedy scores and higher with elevated total serum immunoglobulin E concentrations above a threshold of 0.35 kU/l.
Conclusion
Higher nasal nitric oxide is associated with better odour discrimination in chronic rhinosinusitis and is modulated by age, degree of allergy and severity of chronic rhinosinusitis.
Manure is a primary source of methane (CH4) emissions into the atmosphere. A large proportion of CH4 from manure is emitted during storage, but this varies with storage methods. In this research, we tested whether covering a manure heap with plastic reduces CH4 emission during a short-term composting process. A static chamber method was used to detect the CH4 emission rate and the change of the physicochemical properties of cattle manure which was stored either uncovered (treatment UNCOVERED) or covered with plastic (treatment COVERED) for 30-day periods during the four seasons? The dry matter content of the COVERED treatment was significantly less than the UNCOVERED treatment (P < 0.01), and the C/N ratio of the COVERED treatment significantly greater than the UNCOVERED treatment (P > 0.05) under high temperature. In the UNCOVERED treatment, average daily methane (CH4) emissions were in the order summer > spring > autumn > winter. CH4 emissions were positively correlated with the temperature (R2 = 0.52, P < 0.01). Compared to the UNCOVERED treatment, the daily average CH4 emission rates from COVERED treatment manure were less in the first 19 days of spring, 13 days of summer, 10 days of autumn and 30 days of winter. In summary, covering the manure pile with plastic reduces the evaporation of water during storage; and in winter, long-term covering with plastic film reduces the CH4 emissions during the storage of manure.
Longan is an economically important sub-tropical fruit tree native to southern China and southeast Asia. Its production has been affected significantly by climate change, but the underlying reasons remain unclear. Herein, the potential growing areas of longan were simulated by the Maxent model under current and future conditions. The results showed excellent prediction performance, with an area under curve of >0.9 for model training and validation. The key environmental variables identified were mean temperature of the coldest quarter, minimum temperature of the coldest month, annual mean temperature and mean temperature of the driest quarter. The optimum suitable areas of longan were found to be concentrated mainly in south-western, southern and eastern China, with a slight increase in optimum suitable areas under two different emission scenarios of three global climatic models. However, its future potential growing areas were predicted to differ among provinces or cities. Suitable growing areas in Sichuan, Jiangxi, Guangxi and Chongqing will first increase and then remain approximately unchanged between the 2050s and 2070s; those in Yunnan, Guangdong and Hainan will remain approximately unchanged from the present to the 2070s; those in Fujian and Guizhou will fluctuate slightly from the present to the 2050s and then increase to the 2070s; those in Taiwan will first decrease and then increase. In summary, the major future production areas of longan will be Guangdong, Hainan and Guangxi provinces, followed by Chongqing, Yunnan, Fujian and Taiwan. Thus, this study serves as a useful guide for the management of longan.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Bordetella bronchiseptica is a potential zoonotic pathogen, which mainly causes respiratory diseases in humans and a variety of animal species. B. bronchiseptica is one of the important pathogens isolated from rabbits in Fujian Province. However, the knowledge of the epidemiology and characteristics of the B. bronchiseptica in rabbits in Fujian Province is largely unknown. In this study, 219 B. bronchiseptica isolates recovered from lung samples of dead rabbits with respiratory diseases in Fujian Province were characterised by multi-locus sequencing typing, screening virulence genes and testing antimicrobial susceptibility. The results showed that the 219 isolates were typed into 11 sequence types (STs) including five known STs (ST6, ST10, ST12, ST14 and ST33) and six new STs (ST88, ST89, ST90, ST91, ST92 and ST93) and the ST33 (30.14%, 66/219), ST14 (26.94%, 59/219) and ST12 (16.44%, 36/219) were the three most prevalent STs. Surprisingly, all the 219 isolates carried the five virulence genes (fhaB, prn, cyaA, dnt and bteA) in the polymerase chain reaction screening. Moreover, the isolates were resistant to cefixime, ceftizoxime, cefatriaxone and ampicillin at rates of 33.33%, 31.05%, 11.87% and 3.20%, respectively. This study showed the genetic diversity of B. bronchiseptica in rabbits in Fujian Province, and the colonisation of the human-associated ST12 strain in rabbits in Fujian Province. The results might be useful for monitoring the epidemic strains, developing preventive methods and preventing the transmission of epidemic strains from rabbits to humans.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.
The present study was designed to detect three single nucleotide polymorphisms (SNPs) located on 22q11 that was thought as being of particularly importance for genetic research into schizophrenia. We recruited a total of 176 Chinese family trios of Han descent, consisting of mothers, fathers and affected offspring with schizophrenia for the genetic analysis. The transmission disequilibrium test (TDT) showed that of three SNPs, rs10314 in the 3′-untranslated region of the CLDN5 locus was associated with schizophrenia (χ2 = 4.75, P = 0.029). The other two SNPs, rs1548359 present in the CDC45L locus centromeric of rs10314 and rs739371 in the 5′-flanking region of the CLDN5 locus, did not show such an association. The global chi-square (χ2) test showed that the 3-SNP haplotype system was not associated with schizophrenia although the 1-df test for individual haplotypes showed that the rs1548359(C)-rs10314(G)-rs739371(C) haplotype was excessively non-transmitted (χ2 = 5.32, P = 0.02). Because the claudin proteins are a major component for barrier-forming tight junctions that could play a crucial role in response to changing natural, physiological and pathological conditions, the CLDN5 association with schizophrenia may be an important clue leading to look into a meeting point of genetic and environmental factors.
Schizophrenia is one of the most severe and chronic forms of mental illness. Quantum resonance spectrometer (QRS) test may be useful as a biological marker for the clinical diagnosis of psychiatric disorders of Schizophrenia.
Objectives
To evaluate reliability and psychiatric clinical value of QRS via thought disorder detection.
Methods
We studied 1014 schizophrenic patients, 155 patients with bipolar disorders patient, and 100 normal controls. Thought disorder symptoms of same subjects obtained from QRS test and psychiatrists' diagnoses were compared. Also Thought disorder symptoms of renumbered 65 schizophrenia patient and 100 normal controls were discriminated using QRS test.
Results
Kappa values of thought disorders detection and diagnosed were more than 65% in 6/9 symptoms of schizophrenia, and more than 74% in all 3 symptoms of bipolar disorder. Same consistency could also be seen in Pearson R value, and ROC AUC. In the discriminated analysis, sensitivity, specificity, positive predictive value and negative predictive of delusion, looseness of thought and paralogism thinking detected utilizing QRS are more than 70% same compared with psychiatrists diagnoses.
Conclusions
QRS in thought disorder detection seem to have a predictable value for outcome in schizophrenia and bipolar disorder, would become an objective identification and diagnosis instrument, and might promote psychiatric clinical diagnosis.
Patients with severe mental disorders in low-resource settings have limited access to services, resulting in overwhelming caregiving burden for families. In extreme cases, this has led to the long-term restraining of patients in their homes. China underwent a nationwide initiative to unlock patients and provide continued treatment. This study aims to quantify household economic burden in families after unlocking and treatment, and to identify factors associated with increased burden due to schizophrenia.
Methods
A total of 264 subjects were enrolled from three geographically diverse provinces in 2012. Subjects were patients with schizophrenia who were previously put under restraints and had participated in the ‘unlocking and treatment’ intervention. The primary outcome was the current household economic burden, obtained from past year financial information collected through on-site interview. Patient disease characteristics, treatment, outcomes and family caregiving burden were collected as well. Univariate and multivariate linear regression were used to construct risk factor models for indirect economic burden.
Results
After participating in the intervention, 85% of patients continued to receive mental health services, 70% used medication as prescribed and 80% were never relocked. Family members reported significantly decreased caregiving burden after receiving the intervention. Mean direct and indirect household economic burdens were CNY963 (US$31.7) and CNY11 724 (US$1670) per year, respectively, while family total income was on average CNY12 108 (US$1913) per year. Greater disease severity and poorer patient psychosocial function at time of study were found to be independent factors related to increased indirect burden.
Conclusions
The ‘unlocking and treatment’ intervention has improved the lives of patients and families. Indirect burden due to disease is still a major economic issue that needs to be addressed, potentially through improving treatment and patient functioning. Our findings contribute to the unravelling and eventual elimination of chronic restraining of mentally ill patients in low-resource settings.
In the present study, we aimed to compare anthropometric indicators as predictors of mortality in a community-based setting.
Design:
We conducted a population-based longitudinal study nested in a cluster-randomized trial. We assessed weight, height and mid-upper arm circumference (MUAC) on children 12 months after the trial began and used the trial’s annual census and monitoring visits to assess mortality over 2 years.
Setting:
Niger.
Participants:
Children aged 6–60 months during the study.
Results:
Of 1023 children included in the study at baseline, height-for-age Z-score, weight-for-age Z-score, weight-for-height Z-score and MUAC classified 777 (76·0 %), 630 (61·6 %), 131 (12·9 %) and eighty (7·8 %) children as moderately to severely malnourished, respectively. Over the 2-year study period, fifty-eight children (5·7 %) died. MUAC had the greatest AUC (0·68, 95 % CI 0·61, 0·75) and had the strongest association with mortality in this sample (hazard ratio = 2·21, 95 % CI 1·26, 3·89, P = 0·006).
Conclusions:
MUAC appears to be a better predictor of mortality than other anthropometric indicators in this community-based, high-malnutrition setting in Niger.
Staphylococcus aureus has been recognised as one of the important zoonotic pathogens. However, knowledge about the epidemiology and genetic characteristics of S. aureus in rabbits was limited. The aim of this study was to determine the characteristics of 281 S. aureus isolated from dead rabbits of nine rabbit farms in Fujian Province, China. All the isolates were characterised by multi-locus sequencing typing, detection of virulence factors and antimicrobial susceptibility test. The results showed that the 281 isolates were grouped into two sequence types, ST121 (13.52%, 38/281) and ST398 (86.48%, 243/281). Surprisingly, the ST121 strains were only recovered from the lung samples from one of the nine rabbit farms studied. In the 281 isolates, the virulence genes of nuc, hla, hlb, clfA, clfB and fnbpA were positive, whereas the sea, seb, tsst, eta and etb genes were negative. Notably, the 38 ST121 isolates carried the pvl gene. All the 281 isolates were methicillin-susceptible S. aureus, and the isolates were susceptible to most of the used antibiotics, except for streptomycin, kanamycin, azithromycin and penicillin, and the resistance rates of which were 23.84%, 19.57%, 16.01% and 11.03%, respectively. This study first described the epidemiology and characteristics of S. aureus in rabbits in Fujian Province, which will help in tracking the evolution of epidemic strains and preventing the rabbit–human transmission events.
The Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) typically displays bivoltinism at altitudes below 1700 m in the Qinling Mountains, China. The periods of host colonization and larval overwintering are two important phases in the life cycle of bark beetles, as it is during these periods that they have to contend with host plant defences and periods of intense cold, respectively. Although during different seasons, the females and males of Chinese white pine beetles show varying tolerances to host plant terpenoids, the sex ratio and survival physiology condition of the two beetle generations are unknown. We investigated the sex ratio of individuals, and also examined the body mass, energy stores, and detoxication enzymes of males and females in each of the two generations in order to determine the overall population stability of each generation. We identified a female-biased sex ratio among adults in both generations. Furthermore, patterns of body mass, energy stores, and detoxication enzymes were found to differ between the two sexes and two seasons. Compared with the males, the females have a larger body mass and higher amounts of stored lipids, which are assumed to be adaptations designed to overcome host resistance and facilitate subsequent oviposition.